Input
Devices
The task this
week is to add a sensor to a microcontroller to measure
environmental variables.
This task is
going to be divided into 3 parts, which are the most significant for
me:
1.
Create
tablet
2.
Programming
3.
Final
test
1.
- Create Tablet
For this
assignment I decided to use the hello.load.45 to develop the task
this week.
After making
the tablet in the Roland Modela MDX 40 A using welding tools I
finally welded my tablet finally.
2.
- Programming
I programmed
the card, with the help of the Neil hello.load.45.c code, to work as
my capacitive sensor, and to link it to the PC.
Code:
hello.load.45.c
//
// hello.load.45.c
//
// step response loading hello-world
// 9600
baud FTDI interface
//
// Neil Gershenfeld
// 10/27/10
//
// (c) Massachusetts Institute of
Technology 2010
// Permission granted for experimental and
personal use;
// license for commercial sale available
from MIT.
//
#include <avr/io.h>
#include <util/delay.h>
#define output(directions,pin) (directions |= pin) // set port
direction for output
#define set(port,pin) (port |= pin) // set port
pin
#define clear(port,pin) (port &= (~pin)) // clear
port pin
#define pin_test(pins,pin) (pins & pin) // test for
port pin
#define bit_test(byte,bit) (byte & (1 << bit)) // test for
bit set
#define bit_delay_time 100 // bit delay
for 9600 with overhead
#define bit_delay() _delay_us(bit_delay_time) // RS232 bit
delay
#define half_bit_delay() _delay_us(bit_delay_time/2) // RS232
half bit delay
#define charge_delay_1() _delay_us(1) // charge
delay 1
#define charge_delay_2() _delay_us(10) // charge
delay 2
#define charge_delay_3() _delay_us(100) // charge
delay 3
define settle_delay() _delay_us(100) // settle
delay
#define char_delay() _delay_ms(10) // char
delay
#define serial_port PORTB
#define serial_direction DDRB
#define serial_pin_out (1 << PB2)
#define charge_port PORTB
#define charge_direction DDRB
#define charge_pin (1
<< PB3)
void put_char(volatile unsigned char *port, unsigned char pin, char txchar) {
//
//
send character in txchar on port pin
// assumes line driver (inverts
bits)
//
//
start bit
//
clear(*port,pin);
bit_delay();
//
//
unrolled loop to write data bits
//
if bit_test(txchar,0)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,1)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,2)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,3)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,4)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,5)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,6)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
if bit_test(txchar,7)
set(*port,pin);
else
clear(*port,pin);
bit_delay();
//
//
stop bit
//
set(*port,pin);
bit_delay();
//
//
char delay
//
bit_delay();
}
int main(void)
{
//
//
main
//
static unsigned char up_lo,up_hi,down_lo,down_hi;
//
//
set clock divider to /1
//
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
//
//
initialize output pins
//
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
clear(charge_port, charge_pin);
output(charge_direction, charge_pin);
//
//
init A/D
//
ADMUX = (0 << REFS2) | (0 << REFS1) | (0 << REFS0) // Vcc ref
| (0 << ADLAR) // right adjust
| (0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (0 << MUX0); // PB4
ADCSRA
= (1
<< ADEN)
// enable
| (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // prescaler /128
//
//
main loop
//
while (1) {
//
//
send framing
//
put_char(&serial_port, serial_pin_out,
1);
char_delay();
put_char(&serial_port, serial_pin_out,
2);
char_delay();
put_char(&serial_port, serial_pin_out,
3);
char_delay();
put_char(&serial_port, serial_pin_out,
4);
//
//
settle, charge, and wait 1
//
settle_delay();
set(charge_port, charge_pin);
charge_delay_1();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
up_lo = ADCL;
up_hi = ADCH;
//
//
settle, discharge, and wait 1
//
settle_delay();
clear(charge_port, charge_pin);
charge_delay_1();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
down_lo = ADCL;
down_hi = ADCH;
//
//
send result
//
put_char(&serial_port, serial_pin_out,
up_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
up_hi);
char_delay();
put_char(&serial_port, serial_pin_out,
down_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
down_hi);
char_delay();
//
//
settle, charge, and wait 2
//
settle_delay();
set(charge_port, charge_pin);
charge_delay_2();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
up_lo = ADCL;
up_hi = ADCH;
//
//
settle, discharge, and wait 2
//
settle_delay();
clear(charge_port, charge_pin);
charge_delay_2();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
down_lo = ADCL;
down_hi = ADCH;
//
//
send result
//
put_char(&serial_port, serial_pin_out,
up_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
up_hi);
char_delay();
put_char(&serial_port, serial_pin_out,
down_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
down_hi);
char_delay();
//
// settle, charge, and wait 3
//
settle_delay();
set(charge_port, charge_pin);
charge_delay_3();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
up_lo = ADCL;
up_hi = ADCH;
//
//
settle, discharge, and wait 3
//
settle_delay();
clear(charge_port, charge_pin);
charge_delay_3();
//
//
initiate conversion
//
ADCSRA |= (1 << ADSC);
//
//
wait for completion
//
while (ADCSRA & (1 << ADSC))
;
//
//
save result
//
down_lo = ADCL;
down_hi = ADCH;
//
//
send result
//
put_char(&serial_port, serial_pin_out,
up_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
up_hi);
char_delay();
put_char(&serial_port, serial_pin_out,
down_lo);
char_delay();
put_char(&serial_port, serial_pin_out,
down_hi);
char_delay();
}
}
Programming Module AVR Studio 6
avrdude
Download files
Step Response (Avr Studio 6)
3.
- Final Test
For this test
I connected the tablet to the PC via FTDI cable, ran the
hello.load.45.py program by double clicking on it and started the
test.
Python
code:
#
# hello.load.45.py
#
# receive and display
loading step response
# hello.step.45.py
serial_port
#
# Neil Gershenfeld
# CBA MIT 10/29/10
#
# (c) Massachusetts
Institute of Technology 2010
# Permission granted for
experimental and personal use;
# license for commercial
sale available from MIT
#
from Tkinter import *
import serial
WINDOW = 600 # window size
eps = 0.5 # filter time
constant
filter1 = 0.0 # filtered
value
filter2 = 0.0 # filtered
value
filter3 = 0.0 # filtered
value
def idle(parent,canvas):
global filter1, filter2,
filter3, eps
#
# idle routine
#
byte2 = 0
byte3 = 0
byte4 = 0
ser.flush()
#
# find framing
#
while 1:
byte1 = byte2
byte2 = byte3
byte3 = byte4
byte4 = ord(ser.read())
if ((byte1 == 1) &
(byte2 == 2) & (byte3 == 3) & (byte4 == 4)):
break
#
# read and plot
#
up_low1 = ord(ser.read())
up_high1 = ord(ser.read())
down_low1 = ord(ser.read())
down_high1 = ord(ser.read())
up_low2 = ord(ser.read())
up_high2 = ord(ser.read())
down_low2 = ord(ser.read())
down_high2 = ord(ser.read())
up_low3 = ord(ser.read())
up_high3 = ord(ser.read())
down_low3 = ord(ser.read())
down_high3 = ord(ser.read())
up_value1 = 256*up_high1 +
up_low1
down_value1 = 256*down_high1
+ down_low1
up_value2 = 256*up_high2 +
up_low2
down_value2 = 256*down_high2
+ down_low2
up_value3 = 256*up_high3 +
up_low3
down_value3 = 256*down_high3
+ down_low3
value1 = (up_value1 + (1023
- down_value1))/2.0
value2 = (up_value2 + (1023
- down_value2))/2.0
value3 = (up_value3 + (1023
- down_value3))/2.0
filter1 = (1-eps)*filter1 +
eps*value1
filter2 = (1-eps)*filter2 +
eps*value2
filter3 = (1-eps)*filter3 +
eps*value3
x1 = int(.2*WINDOW +
(.9-.2)*WINDOW*filter1/1023.0)
x2 = int(.2*WINDOW +
(.9-.2)*WINDOW*filter2/1023.0)
x3 = int(.2*WINDOW +
(.9-.2)*WINDOW*filter3/1023.0)
canvas.itemconfigure("text1",text="%.1f"%filter1)
canvas.itemconfigure("text2",text="%.1f"%filter2)
canvas.itemconfigure("text3",text="%.1f"%filter3)
canvas.coords('rect11',.2*WINDOW,.05*WINDOW,x1,.2*WINDOW)
canvas.coords('rect12',x1,.05*WINDOW,.9*WINDOW,.2*WINDOW)
canvas.coords('rect21',.2*WINDOW,.3*WINDOW,x2,.45*WINDOW)
canvas.coords('rect22',x2,.3*WINDOW,.9*WINDOW,.45*WINDOW)
canvas.coords('rect31',.2*WINDOW,.55*WINDOW,x3,.7*WINDOW)
canvas.coords('rect32',x3,.55*WINDOW,.9*WINDOW,.7*WINDOW)
canvas.update()
parent.after_idle(idle,parent,canvas)
#
# check command line
arguments
#
if (len(sys.argv) != 2):
print "command line:
hello.load.45.py serial_port"
sys.exit()
port = sys.argv[2]
#
# open serial port
#
ser =
serial.Serial(port,9600)
ser.setDTR()
#
# set up GUI
#
root = Tk()
root.title('hello.load.45.py
(q to exit)')
root.bind('q','exit')
canvas = Canvas(root,
width=WINDOW, height=.75*WINDOW, background='white')
#
canvas.create_text(.1*WINDOW,.125*WINDOW,text="1",font=("Helvetica",
24),tags="text1",fill="#0000b0")
canvas.create_rectangle(.2*WINDOW,.05*WINDOW,.3*WINDOW,.2*WINDOW,
tags='rect11',
fill='#b00000')
canvas.create_rectangle(.3*WINDOW,.05*WINDOW,.9*WINDOW,.2*WINDOW,
tags='rect12',
fill='#0000b0')
#
canvas.create_text(.1*WINDOW,.375*WINDOW,text="2",font=("Helvetica",
24),tags="text2",fill="#0000b0")
canvas.create_rectangle(.2*WINDOW,.3*WINDOW,.3*WINDOW,.45*WINDOW,
tags='rect21',
fill='#b00000')
canvas.create_rectangle(.3*WINDOW,.3*WINDOW,.9*WINDOW,.45*WINDOW,
tags='rect22',
fill='#0000b0')
#
canvas.create_text(.1*WINDOW,.625*WINDOW,text="3",font=("Helvetica",
24),tags="text3",fill="#0000b0")
canvas.create_rectangle(.2*WINDOW,.55*WINDOW,.3*WINDOW,.7*WINDOW,
tags='rect31',
fill='#b00000')
canvas.create_rectangle(.3*WINDOW,.55*WINDOW,.9*WINDOW,.7*WINDOW,
tags='rect32',
fill='#0000b0')
canvas.pack()
#
# start idle loop
#
root.after(100,idle,root,canvas)
root.mainloop()
Download file Step Response. py
I had problems
running thinker and using the Neil python code, so I was unable to
test my input device.