1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
| // neostruder-firmware.ino
// Luis Pacheco
//
// This work may be reproduced, modified, distributed,
// performed, and displayed for any purpose, but must
// acknowledge this project. Copyright is retained and
// must be preserved. The work is provided as is; no
// warranty is provided, and users accept all liability.
///// Import libraries///
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <SPI.h>
#include "Adafruit_MAX31856.h"
#include <ezOutput.h>
#include <PID_v1.h>
#include "WiFi.h"
#include <WiFiUdp.h>
#include <OSCMessage.h>
#include <OSCBundle.h>
// Display variables///
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
// Rotary encoder variables
//Motor encoder
#define SPIN_A 2
#define SPIN_B 4
#define SPIN_BUTTON 15
//Fan encoder
#define FPIN_A 17
#define FPIN_B 5
#define FPIN_BUTTON 16
//temp encoder
#define TPIN_A 19
#define TPIN_B 3
#define TPIN_BUTTON 18
// Fan pwm out
#define FPIN_OUT 14
#define FPWM_Ch 1
#define FPWM_Res 8
#define FPWM_Freq 250000 //1000 or 250 000
int FPWM_DutyCycle = 0;
//#define robotIn 12 // start/stop extruder
// Global Variables for Encoder State
static int svalue = 0;
static int fvalue = 0;
static int tvalue = 0;
int DEBONCE_TO = 150;
int DEBONCE_BTN = 200;
volatile bool sturnedCW = false;
volatile bool sturnedCCW = false;
volatile bool fturnedCW = false;
volatile bool fturnedCCW = false;
volatile bool tturnedCW = false;
volatile bool tturnedCCW = false;
unsigned long slastButtonPress = 0;
unsigned long sdebounceTime = 0;
unsigned long flastButtonPress = 0;
unsigned long fdebounceTime = 0;
unsigned long tlastButtonPress = 0;
unsigned long tdebounceTime = 0;
bool slastWasCW = false;
bool slastWasCCW = false;
bool flastWasCW = false;
bool flastWasCCW = false;
bool tlastWasCW = false;
bool tlastWasCCW = false;
//// Heater Variables ////
bool enable = false;
double Output;
const unsigned long WindowSize = 5000;
unsigned long windowStartTime;
int OutHeater = 12;
int OutFan = 6;
bool HeaterEnable = false;
bool FanEnable = false;
int FanSpeed = 0;
int FanStep = 10;
double curTemp = 0;
double tarTemp = 0;
unsigned long LastReadTime = 0;
#define MAXDRDY 34
#define MAXDO 35
#define MAXCS 33
#define MAXCLK 32
#define MAXDI 13
PID myPID(&curTemp, &Output, &tarTemp, 2, 5, 1, DIRECT);
// Use software SPI: CS, DI, DO, CLK
Adafruit_MAX31856 thermocouple = Adafruit_MAX31856(MAXCS, MAXDI, MAXDO, MAXCLK);
//motor variables
int OutStep = 25;
int OutDir = 26;
int OutEnable = 27;
bool MotorEnable = false;
float MotorRev = 800;
float MotorSpeed = 0; // rev per minute
int MotorStep = 25;
unsigned long LastRunTime = 0;
unsigned long currentMotorTime = 0;
unsigned long previousMotorTime = 0;
long motorInterval = 0.1;
bool ignoreRobotMotorSpeed = false;
// network variables:
WiFiUDP udp;
int port = 55555;
const char* ssid = "mywifi";
const char* password = "mypassword";
// Set your Static IP address
IPAddress static_IP(192, 168, 50, 222);
IPAddress gateway(192, 168, 1, 1);
IPAddress subnet(255, 255, 255, 0);
void setup() {
Serial.begin(115200);
// Wifi Setup
if (!WiFi.config(static_IP, gateway, subnet)) {
Serial.println("STA Failed to configure");
}
// Connect to the wifi router's network
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to WiFi..");
}
// Confirm the Static Address
Serial.print("ESP32_0 IP Address: ");
Serial.println(WiFi.localIP());
// Begin listening on the UDP port
udp.begin(port);
///Oled setup
if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3D for 128x64
Serial.println(F("SSD1306 allocation failed"));
}
delay(2000);
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0, 0);
// Display static text
OLED();
// Setup thermocouple
while (!Serial) delay(1); // wait for Serial on Leonardo/Zero, etc
Serial.println("MAX31856 test");
// wait for MAX chip to stabilize
delay(500);
Serial.println("Initializing sensor...");
if (!thermocouple.begin()) {
Serial.println("ERROR.");
while (1) delay(10);
}
Serial.println("SENSOR DONE.");
pinMode(MAXDRDY, INPUT);
//// MOTOR setup////
pinMode(OutDir, OUTPUT);
pinMode(OutStep, OUTPUT);
//outStep.low();
pinMode(OutEnable, OUTPUT);
digitalWrite(OutEnable, true); // activate extruder motor
digitalWrite(OutDir, true); //Anti-Clockwise
//float curSpeed = 0;
Serial.println("Motor setup OK");
currentMotorTime = millis();
previousMotorTime = millis();
//Motor Encoder setup
pinMode(SPIN_A, INPUT_PULLUP);
pinMode(SPIN_B, INPUT_PULLUP);
pinMode(SPIN_BUTTON, INPUT_PULLUP);
attachInterrupt(SPIN_B, scheckEncoder, CHANGE);
Serial.println("Reading from encoder: MOTOR ");
//Fan Encoder setup
pinMode(FPIN_A, INPUT_PULLUP);
pinMode(FPIN_B, INPUT_PULLUP);
pinMode(FPIN_BUTTON, INPUT_PULLUP);
attachInterrupt(FPIN_B, fcheckEncoder, CHANGE);
Serial.println("Reading from encoder: FAN ");
//Temp Encoder setup
pinMode(TPIN_A, INPUT_PULLUP);
pinMode(TPIN_B, INPUT_PULLUP);
pinMode(TPIN_BUTTON, INPUT_PULLUP);
attachInterrupt(TPIN_B, tcheckEncoder, CHANGE);
Serial.println("Reading from encoder: TEMP ");
// Fan PWM output
ledcSetup(FPWM_Ch, FPWM_Freq, FPWM_Res);
ledcAttachPin(FPIN_OUT, FPWM_Ch);
ledcWrite(FPWM_Ch, FPWM_DutyCycle);
// Robot input
//pinMode(robotIn, INPUT);
//PID control
pinMode(OutHeater, OUTPUT);
windowStartTime = millis();
// Tell the PID to range between 0 and the full window size
myPID.SetOutputLimits(0, WindowSize);
// Turn the PID on
myPID.SetMode(AUTOMATIC);
if (!thermocouple.begin()) {
Serial.println("Could not initialize thermocouple.");
while (1) delay(10);
}
thermocouple.setThermocoupleType(MAX31856_TCTYPE_K);
thermocouple.setConversionMode(MAX31856_CONTINUOUS);
// thermocouple.triggerOneShot();
// delay(500);
if (thermocouple.conversionComplete()) {
curTemp = thermocouple.readThermocoupleTemperature();
Serial.println(curTemp);
}
else {
Serial.println("Conversion not complete!");
}
}
void loop() {
//Check for UDP changes
check_for_OSC_message();
// motor control
MotorEnable = digitalRead(true);
// if (!digitalRead(MAXDRDY)) {
// curTemp = thermocouple.readThermocoupleTemperature();
// Serial.println(curTemp);
// }
// if (thermocouple.conversionComplete()) {
// curTemp = thermocouple.readThermocoupleTemperature();
// Serial.println(curTemp);
// }
if (MotorEnable && MotorSpeed != 0) {
currentMotorTime = millis();
//Serial.print(currentMotorTime);
float StepPerMillis = MotorRev * MotorSpeed / 30000000;
float MillisPerStep = 1 / StepPerMillis;
//Serial.println(MillisPerStep);
digitalWrite(OutStep, true);
delayMicroseconds(MillisPerStep);
digitalWrite(OutStep, false);
delayMicroseconds(MillisPerStep);
}
// thermocouple.triggerOneShot();
// if (thermocouple.conversionComplete()) {
// curTemp = thermocouple.readThermocoupleTemperature();
// Serial.println(curTemp);
// }
// else {
// Serial.println("Conversion not complete!");
// }
//OLED(); // I kept your OLED update here
// HEATER Controller with PID control only if HeaterEnable is true
if (HeaterEnable) {
myPID.Compute();
unsigned long now = millis();
if (now - windowStartTime > WindowSize) {
// Time to shift the Relay Window
windowStartTime += WindowSize;
}
if (Output > now - windowStartTime) {
digitalWrite(OutHeater, HIGH);
//Serial.println("heater on");
} else {
digitalWrite(OutHeater, LOW);
//Serial.println("heater off");
}
}
else {
digitalWrite(OutHeater, LOW);
//Serial.println("heater off due to HeaterEnable being false");
}
// motor Rotary encoder
if (sturnedCW) {
svalue++;
//MotorSpeed += MotorStep;
MotorSpeed = svalue * MotorStep;
//Serial.print("Turned CW: ");
//Serial.println(svalue);
sturnedCW = false;
slastWasCW = true;
sdebounceTime = millis();
OLED();
}
if (sturnedCCW) {
if (!MotorSpeed <= 0) {
svalue--;
//MotorSpeed -= MotorStep;
MotorSpeed = svalue * MotorStep;
}
//Serial.print("Turned CCW: ");
//Serial.println(svalue);
sturnedCCW = false;
slastWasCCW = true;
sdebounceTime = millis();
OLED();
}
if ((millis() - sdebounceTime) > DEBONCE_TO) {
slastWasCW = false;
slastWasCCW = false;
}
int sbtnState = (digitalRead(SPIN_BUTTON));
// Set MotorSpeed to Zero
if (sbtnState == LOW) {
if (millis() - slastButtonPress > DEBONCE_BTN) {
if (!MotorSpeed == 0) {
// Turn off the motor speed
MotorSpeed = 0;
// Ignore Robot's Motor Speed
//Serial.print('\n');
} else {
// Go back to previous motor speed
MotorSpeed = svalue * MotorStep;
}
}
slastButtonPress = millis();
OLED();
}
//Temperature rotary encoder
if (tturnedCW) {
tvalue++;
tarTemp = tvalue * 5; // Adjusting in 5-degree increments
//Serial.print("Turned CW: ");
//Serial.println(tvalue);
tturnedCW = false;
tlastWasCW = true;
tdebounceTime = millis();
OLED();
}
if (tturnedCCW) {
if (tarTemp > 0) { // Assuming temperature cannot go below 0.
tvalue--;
tarTemp = tvalue * 5; // Adjusting in 5-degree increments
}
//Serial.print("Turned CCW: ");
//Serial.println(tvalue);
tturnedCCW = false;
tlastWasCCW = true;
tdebounceTime = millis();
OLED();
}
if ((millis() - tdebounceTime) > DEBONCE_TO) {
tlastWasCW = false;
tlastWasCCW = false;
}
int tbtnState = (digitalRead(TPIN_BUTTON)); // Assuming you have TEMP_BUTTON for temperature control
// Set tarTemp to Default/Initial Value
if (tbtnState == LOW) {
if (millis() - tlastButtonPress > DEBONCE_BTN) {
if (tarTemp != 0) { // Resetting the tarTemp
tarTemp = 0;
HeaterEnable = false;
} else {
// Go back to previous temperature
tarTemp = tvalue * 5;
HeaterEnable = true;
}
}
tlastButtonPress = millis();
OLED();
}
// Fan Rotary encoder
if (fturnedCW) {
fvalue++;
if (fvalue > 10) {
fvalue = 10;
}
FanSpeed = fvalue * FanStep;
// map(val, incoming_min, incoming_max, desired_min, desired_max);
//Serial.println(FanSpeed);
updateFan();
//Serial.println(fvalue);
fturnedCW = false;
flastWasCW = true;
flastWasCCW = false;
fdebounceTime = millis();
OLED();
}
if (fturnedCCW) {
if (!FanSpeed == 0) {
fvalue--;
FanSpeed = fvalue * FanStep;
}
//Serial.println(FanSpeed);
updateFan();
//Serial.println(fvalue);
fturnedCCW = false;
flastWasCCW = true;
flastWasCW = false;
fdebounceTime = millis();
OLED();
}
if ((millis() - fdebounceTime) > DEBONCE_TO) {
flastWasCW = false;
flastWasCCW = false;
}
int fbtnState = (digitalRead(FPIN_BUTTON));
if (fbtnState == LOW) {
if (millis() - flastButtonPress > DEBONCE_BTN) {
if (!FanSpeed == 0) {
// Serial.println("Fan OFF");
// Serial.println(String(FanEnable));
FanSpeed = 0;
FPWM_DutyCycle = map(FanSpeed, 0, 100, 0, 255);
ledcWrite(FPWM_Ch, FPWM_DutyCycle);
//digitalWrite(OutFan, FanEnable);
//Serial.print('\n');
} else {
// Serial.println("Fan ON");
// Serial.println(String(FanEnable));
FanSpeed = fvalue * FanStep;
FPWM_DutyCycle = map(FanSpeed, 0, 100, 0, 255);
ledcWrite(FPWM_Ch, FPWM_DutyCycle);
//digitalWrite(OutFan, FanEnable);
//Serial.print('\n');
}
}
flastButtonPress = millis();
OLED();
}
}
void scheckEncoder() {
if ((!sturnedCW) && (!sturnedCCW)) {
int spinA = digitalRead(SPIN_A);
delayMicroseconds(1500);
int spinB = digitalRead(SPIN_B);
if (spinA == spinB) {
if (slastWasCW) {
sturnedCW = true;
} else {
sturnedCCW = true;
}
} else {
if (slastWasCCW) {
sturnedCCW = true;
} else {
sturnedCW = true;
}
}
}
}
void tcheckEncoder() {
if ((!tturnedCW) && (!tturnedCCW)) {
int tpinA = digitalRead(TPIN_A);
delayMicroseconds(1500);
int tpinB = digitalRead(TPIN_B);
if (tpinA == tpinB) {
if (tlastWasCW) {
tturnedCW = true;
} else {
tturnedCCW = true;
}
} else {
if (tlastWasCCW) {
tturnedCCW = true;
} else {
tturnedCW = true;
}
}
}
}
void fcheckEncoder() {
if ((!fturnedCW) && (!fturnedCCW)) {
int fpinA = digitalRead(FPIN_A);
delayMicroseconds(1500);
int fpinB = digitalRead(FPIN_B);
if (fpinA == fpinB) {
if (flastWasCW) {
fturnedCW = true;
} else {
fturnedCCW = true;
}
} else {
if (flastWasCCW) {
fturnedCCW = true;
} else {
fturnedCW = true;
}
}
}
}
void updateFan(void){
FPWM_DutyCycle = map(FanSpeed, 0, 100, 0, 255);
ledcWrite(FPWM_Ch, FPWM_DutyCycle);
}
void OLED(void) {
//cTemp = module.readCelsius();
display.clearDisplay();
display.setCursor(0, 0);
//display.println("Motor " + String(bool(digitalRead(robotIn))));
display.println("Speed " + String(int(MotorSpeed)));
display.println("Fan " + String(int(FanSpeed)) + " %");
// display.println("H " + String(HeaterEnable));
display.println(String(int(curTemp)) + "/" + String(int(tarTemp)) + " C");
display.display();
}
void on_message_received(OSCMessage& msg) {
// Get the LED index from the message address
// Get the message address
char msg_addr[255];
msg.getAddress(msg_addr);
Serial.println(msg_addr);
String addr = "";
addr += msg_addr;
if (addr == "/MotorSpeed") {
MotorSpeed = msg.getInt(0);
Serial.println(MotorSpeed);
}
else if (addr == "/FanSpeed") {
FanSpeed = msg.getInt(0);
updateFan();
Serial.println(FanSpeed);
}
else if (addr == "/tarTemp") {
tarTemp = msg.getInt(0);
Serial.println(tarTemp);
}
// else if (addr == "/enable") {
// enable = msg.getBool(0);
// Serial.println(enable);
// }
OLED();
}
void check_for_OSC_message() {
OSCMessage msg;
int size = udp.parsePacket();
if (size > 0) {
while (size--) {
msg.fill(udp.read());
}
if (!msg.hasError()) {
// Get the message address
char msg_addr[255];
msg.getAddress(msg_addr);
Serial.print("MSG_ADDR: ");
Serial.println(msg_addr);
// if (!msg.isBundle()) {
msg.dispatch(msg_addr, on_message_received);
}
}
}
|