Sure! Let me explain what this Arduino code does, step by step:

🔌 Libraries and Setup
#include <Wire.h>
· Includes the Wire library, which allows the Arduino to communicate using I2C (a two-wire communication protocol).
void setup() {
 Serial.begin(115200);
 Wire.begin();
}
· Serial.begin(115200);: Initializes serial communication with the computer at 115200 bits per second.
· Wire.begin();: Initializes the Arduino as an I2C master, ready to send data over the I2C bus.

🔁 Main Loop
void loop() {
 while (Serial.available() > 0) {
 int deviceAddr = Serial.parseInt();
 int blinkCnt = Serial.parseInt();
· Serial.available() > 0: Checks if there is any data coming in from the serial port.
· Serial.parseInt(): Reads the next integer from the serial input. It’s used twice here to:
1. Get the I2C address of the target device (deviceAddr)
2. Get the number of blinks or a command value (blinkCnt)
 char buf[100];
 sprintf(buf,"sending to device: %i\t number of blinks: %i",deviceAddr, blinkCnt);
 Serial.println(buf);
· This formats and prints the command being sent for debugging purposes.
 Wire.beginTransmission(deviceAddr); // start communication with the I2C device
 Wire.write(blinkCnt); // send the blink count as a byte
 Serial.println(Wire.endTransmission()); // ends transmission and prints the result
· Wire.beginTransmission(addr): Begins communication with a device at deviceAddr.
· Wire.write(blinkCnt): Sends the blink count to that device.
· Wire.endTransmission(): Ends the transmission. The return value indicates success (0) or various errors (1, 2, etc.), which is then printed to serial.

🧠 Summary
This Arduino code listens to the Serial port, expecting two integers:
1. An I2C device address
2. A value (e.g., number of blinks)
It then:
· Sends that value to the specified I2C address
· Prints what it sent and the result of the transmission

🔧 Example
If you send:
8 5
over the Serial Monitor, the Arduino will:
· Send 5 to the device at I2C address 8
· Print:
· sending to device: 8	 number of blinks: 5
· 0
Let me know if you want help writing the code for the receiver Arduino that gets this data!
Sure! Let me explain what this Arduino code does, step by step:

🔌 Libraries and Setup
#include <Wire.h>
· Includes the Wire library, which allows the Arduino to communicate using I2C (a two-wire communication protocol).
void setup() {
 Serial.begin(115200);
 Wire.begin();
}
· Serial.begin(115200);: Initializes serial communication with the computer at 115200 bits per second.
· Wire.begin();: Initializes the Arduino as an I2C master, ready to send data over the I2C bus.

🔁 Main Loop
void loop() {
 while (Serial.available() > 0) {
 int deviceAddr = Serial.parseInt();
 int blinkCnt = Serial.parseInt();
· Serial.available() > 0: Checks if there is any data coming in from the serial port.
· Serial.parseInt(): Reads the next integer from the serial input. It’s used twice here to:
1. Get the I2C address of the target device (deviceAddr)
2. Get the number of blinks or a command value (blinkCnt)
 char buf[100];
 sprintf(buf,"sending to device: %i\t number of blinks: %i",deviceAddr, blinkCnt);
 Serial.println(buf);
· This formats and prints the command being sent for debugging purposes.
 Wire.beginTransmission(deviceAddr); // start communication with the I2C device
 Wire.write(blinkCnt); // send the blink count as a byte
 Serial.println(Wire.endTransmission()); // ends transmission and prints the result
· Wire.beginTransmission(addr): Begins communication with a device at deviceAddr.
· Wire.write(blinkCnt): Sends the blink count to that device.
· Wire.endTransmission(): Ends the transmission. The return value indicates success (0) or various errors (1, 2, etc.), which is then printed to serial.

🧠 Summary
This Arduino code listens to the Serial port, expecting two integers:
1. An I2C device address
2. A value (e.g., number of blinks)
It then:
· Sends that value to the specified I2C address
· Prints what it sent and the result of the transmission

🔧 Example
If you send:
8 5
over the Serial Monitor, the Arduino will:
· Send 5 to the device at I2C address 8
· Print:
· sending to device: 8	 number of blinks: 5
· 0
Let me know if you want help writing the code for the receiver Arduino that gets this data!

Great! Now you're looking at the I2C slave device code — the one that receives the blink count from the master (which you shared earlier). Let me break it down clearly:

🧠 Purpose
This code sets up an Arduino as an I2C slave at address 9. When it receives a number from the master, it blinks the onboard LED (pin 13) that many times.

🧱 Code Breakdown
#define SLAVE_ADDR 9
#include <Wire.h>

volatile int numOfBlink = 0;
· SLAVE_ADDR 9: This device will listen for I2C messages addressed to 9.
· volatile int numOfBlink: This is a shared variable that can be modified inside an interrupt, so it's declared volatile to avoid compiler optimizations that might break things.

🧠 Forward Declaration
void callback(int cnt);
· Declares a function that will be triggered whenever data is received over I2C.

⚙️ Setup
void setup() {
 Wire.begin(SLAVE_ADDR); // Initialize this device as an I2C slave at address 9
 Serial.begin(115200); // Start Serial for debugging
 Wire.onReceive(callback); // Register the receive callback
 pinMode(13, 1); // Set pin 13 (built-in LED) as output
}

📬 Receive Callback
void callback(int cnt){
 numOfBlink = Wire.read();
 char buf[100];
 sprintf(buf,"I am device: %i\t number of blinks: %i",SLAVE_ADDR, numOfBlink);
 Serial.println(buf);
}
· This function is called automatically whenever data is received via I2C.
· Wire.read() reads one byte from the master's message — the blink count.
· It stores it in numOfBlink, then prints a debug message to Serial.

🔁 Main Loop
void loop() {
 if(numOfBlink){
 interrupts(); // Ensure interrupts are enabled
 digitalWrite(13, 1); // Turn LED on
 delay(250);
 digitalWrite(13, 0); // Turn LED off
 delay(250);

 noInterrupts(); // Pause interrupts to safely update shared variable
 numOfBlink--;
 interrupts(); // Resume interrupts
 }
}
· If numOfBlink is greater than 0, it:
· Blinks the LED once (on for 250ms, off for 250ms)
· Decrements numOfBlink safely using noInterrupts() and interrupts() to prevent conflicts with the callback

🧪 Example in Action
If the master sends:
9 3
The slave device at address 9 will:
1. Receive the value 3 via I2C
2. Set numOfBlink = 3
3. Blink the LED on pin 13 three times

✅ Summary
	Role
	Function

	Master
	Sends blink count to a slave using I2C

	Slave
	Listens for data, stores blink count, blinks

Let me know if you'd like to expand this to more than one slave or send more complex data!

