Tests
Battery power
- Powering Pico with a 12V battery and voltage measurement
- Integration test on V0.1 board
- Battery voltage drop
- Maximum current
1. Powering Pico with a 12V battery and voltage measurement
-
Components:
- 12 V 6000 mAh Li-ion battery
- LM2596 buck converter module
- Raspberry Pi Pico
- SH1106 OLED
- R1 (47 kΩ)
- R2 (10 kΩ)
- Schottly barrier diode (40V 1A)
-
Overview:
- Voltage measurement:
- Voltage divider reduces battery voltage up to 12 V to 3.3 V or less
- R1 = 47 kΩ (because 33 kΩ was not available), R2 = 10 kΩ
- Vadc = Vin × (R2 / (R1 + R2)) = 12 × (10 / 57) ≈ 2.10V
- Pico's ADC pin measures voltage (up to 3.3 V)
- Vadc: GP26 (ADC0) → VBAT = Vadc × 5.7 = Original voltage
- VSYS: GPIO 29 (ADC3)
- The OLED displays the measured VBAT and VSYS voltage
- Voltage divider reduces battery voltage up to 12 V to 3.3 V or less
- Voltage regulation and Pico power supply
- Regulated 12V battery power to 5V using an LM2596 buck converter
- Output voltage: set to 5V
- Supplied it to the Pico through the VSYS pin
- VSYS: Pico’s main system input, supports 1.8V to 5.5V
- Pico automatically selects the higher of USB or VSYS when both are connected
- Schottky barrier diode 40V1A 1N5819 to prevent one power source from back-feeding the other (Pico also equip onboard)
- Lower forward voltage drop compared to noraml diodes
- Regulated 12V battery power to 5V using an LM2596 buck converter
- Voltage measurement:
-
Wiring:

-
Code:
Arduino code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Minimal VBAT & VSYS Voltage Test for Raspberry Pi Pico + OLED display uint16_t raw; // Raw ADC reading (0–4095 for 12-bit resolution) #include <U8g2lib.h> int xPosText = 128; // Initial horizontal position for the text int xPosRect = 0; // Initial horizontal position for the rectangles // SH1106 128x64 SPI constructor (4-wire software SPI) #define OLED_CS 9 #define OLED_DC 13 #define OLED_RST 12 #define OLED_SCK 10 #define OLED_MOSI 11 U8G2_SH1106_128X64_NONAME_F_4W_SW_SPI u8g2( U8G2_R0, /* clock=*/ OLED_SCK, /* data=*/ OLED_MOSI, /* cs=*/ OLED_CS, /* dc=*/ OLED_DC, /* reset=*/ OLED_RST ); void setup() { Serial.begin(14101); // Initialize serial communication analogReadResolution(12); // Use 12-bit ADC (0–4095) pinMode(26, INPUT); // GPIO26 for VBAT (external divider) pinMode(29, INPUT); // GPIO29 for VSYS (internal divider) pinMode(LED_BUILTIN, OUTPUT); // Built-in LED for activity indication u8g2.begin(); // Initialize OLED } // Function: readVBAT float readVBAT() { uint16_t raw = analogRead(26); float v_adc = raw * 3.3 / 4095.0; // ADC to voltage float v_bat = v_adc * 5.7; // Divider compensation (adjust if needed) Serial.print("ADC26: "); Serial.print(raw); Serial.print(" | VBAT: "); Serial.print(v_bat, 3); Serial.println(" V"); return v_bat; } // Function: readVSYS float readVSYS() { uint16_t raw = analogRead(29); float v_adc = raw * 3.3 / 4095.0; float v_sys = v_adc * 3.0; // Typical divider factor for VSYS ADC input Serial.print("ADC29: "); Serial.print(raw); Serial.print(" | VSYS: "); Serial.print(v_sys, 3); Serial.println(" V"); return v_sys; } void loop() { digitalWrite(LED_BUILTIN, HIGH); float v_bat = readVBAT(); float v_sys = readVSYS(); // OLED display u8g2.clearBuffer(); u8g2.setFont(u8g2_font_10x20_tr); char buf1[16]; snprintf(buf1, sizeof(buf1), "VBAT: %.2fV", v_bat); u8g2.drawStr(0, 20, buf1); char buf2[16]; snprintf(buf2, sizeof(buf2), "VSYS: %.2fV", v_sys); u8g2.drawStr(0, 40, buf2); u8g2.sendBuffer(); digitalWrite(LED_BUILTIN, LOW); delay(1000); } -
Outocome:

USB power Battery power VBAT VSYS Note Connected Disconnected 0.2 V 5.0 V USB power = 5 V Connected Connected 12.0 V 5.0 V USB power is higher → 5.0 V Disconnected Connected 12.0 V 4.8 V Battery power was dropped by the diode (The multimeter shows 5.07 V before the diode) Accuracy:
Condition Multimeter (Actual Voltage) ADC Reading (Measured) Battery disconnected 0.00 V 0.16 V Battery connected 11.71 V 11.98 V According to ChatGPT:
- 0.2-0.3 V difference is reasonable (≈2–3 %).
- Possible causes:
- Resistor tolerance (±1–5 %)
- ADC inaccuracy and noise
- VREF variation (3.25–3.35 V)
- Breadboard or wire resistance
- Lack of calibration
- Possible improvements (optional):
- Use precision resistors (1 % or better)
- Add a capacitor (0.1 µF–1 µF) across ADC input for stability
- Measure actual VREF and adjust in code
- Average multiple ADC readings for smoother output
Calibration:
v_bat = v_adc * 5.7 - 0.25;- or
v_bat = v_adc * 5.7 * 0.98;?
2. Integration test on V0.1 board
-
Overview:
- Integrated the 12V battery power, buck converter for 5V line, measurement of battery and VSYS voltage and displaying it on SPI OLED.
- Wired using jump wires and bread board. Messy.
- 12V line for buck converter and voltage divider is connected to the capacitors on the V0.1 board using alligator clips.
- To test without serial over USB, two limit switches were used to move X and Y. Code was added to generate G-code while limit X or Y was pressed, but the rest of the code remained unchanged.
- While USB connected, it works as it is.
-
Wiring:
Beware of short circuits

-
Code:
Arduino code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
//////////////////// for Voltage measurement uint16_t raw; // Raw ADC reading (0–4095 for 12-bit resolution) #include <U8g2lib.h> int xPosText = 128; // Initial horizontal position for the text int xPosRect = 0; // Initial horizontal position for the rectangles // SH1106 128x64 SPI constructor (4-wire software SPI) #define OLED_SCK 6 //10 #define OLED_MOSI 7 //11 #define OLED_RST 4 //12, 8 #define OLED_DC 5 //13, 9 #define OLED_CS 8 //9, 10 U8G2_SH1106_128X64_NONAME_F_4W_SW_SPI u8g2( U8G2_R0, /* clock=*/ OLED_SCK, /* data=*/ OLED_MOSI, /* cs=*/ OLED_CS, /* dc=*/ OLED_DC, /* reset=*/ OLED_RST ); //////////////////// for FP V0.1 String generatedGcode = ""; // for test without SERIAL bool gcodeGenerated = false; #include <AccelStepper.h> #include <Servo.h> // Global position float currentX = 0; float currentY = 0; float currentR = 0; // Calibration: steps required to move 1mm or 1 degree const float STEPS_PER_MM_X = 17.95; // 17.95, adjust based on mechanical setup const float STEPS_PER_MM_Y = 17.00; const float STEPS_PER_DEG_R = 45.50; // for rotation // Stepper motor pins const int STEP_PIN_RF = 19; const int DIR_PIN_RF = 18; const int STEP_PIN_LF = 12; const int DIR_PIN_LF = 13; const int STEP_PIN_RB = 17; const int DIR_PIN_RB = 16; const int STEP_PIN_LB = 14; const int DIR_PIN_LB = 15; // Microstepping control // Swap the EN pin to 9, omit MS1~3 const int EN_PIN = 11; //9 // const int MS1 = 6, MS2 = 7, MS3 = 8; // Servo Z-axis Servo servoZ; const int SERVO_PIN_Z = 22; int currentZ = 120; // // Limit switches const int LIMIT_X = 20; //28 const int LIMIT_Y = 21; //27 const int MAX_SPEED = 1500; //800 const int ACCEL = 2000; //600 const int HOMING_SPEED = 200; const int BACK_OFF_STEPS = 500; const unsigned long INACTIVITY_TIMEOUT = 5000; // ms unsigned long lastCommandTime = 0; String input = ""; // Stepper drivers AccelStepper stepperRF(AccelStepper::DRIVER, STEP_PIN_RF, DIR_PIN_RF); AccelStepper stepperLF(AccelStepper::DRIVER, STEP_PIN_LF, DIR_PIN_LF); AccelStepper stepperRB(AccelStepper::DRIVER, STEP_PIN_RB, DIR_PIN_RB); AccelStepper stepperLB(AccelStepper::DRIVER, STEP_PIN_LB, DIR_PIN_LB); void setup() { // for Voltage measurement Serial.begin(14101); // Initialize serial communication analogReadResolution(12); // Use 12-bit ADC (0–4095) pinMode(26, INPUT); // GPIO26 for VBAT (external divider) pinMode(29, INPUT); // GPIO29 for VSYS (internal divider) pinMode(LED_BUILTIN, OUTPUT); // Built-in LED for activity indication u8g2.begin(); // Initialize OLED // for FP V0.1 pinMode(EN_PIN, OUTPUT); // pinMode(MS1, OUTPUT); pinMode(MS2, OUTPUT); pinMode(MS3, OUTPUT); pinMode(LIMIT_X, INPUT_PULLUP); pinMode(LIMIT_Y, INPUT_PULLUP); digitalWrite(EN_PIN, LOW); // enable drivers // digitalWrite(MS1, HIGH); digitalWrite(MS2, HIGH); digitalWrite(MS3, HIGH); stepperRF.setMaxSpeed(MAX_SPEED); stepperRF.setAcceleration(ACCEL); stepperLF.setMaxSpeed(MAX_SPEED); stepperLF.setAcceleration(ACCEL); stepperRB.setMaxSpeed(MAX_SPEED); stepperRB.setAcceleration(ACCEL); stepperLB.setMaxSpeed(MAX_SPEED); stepperLB.setAcceleration(ACCEL); servoZ.attach(SERVO_PIN_Z, 500, 2400); servoZ.write(currentZ); lastCommandTime = millis(); Serial.println("Ready for G-code like G1 X100 Y0 Z90 or G28"); Serial.print("Initial position: X="); Serial.print(currentX); Serial.print(" Y="); Serial.print(currentY); Serial.print(" R="); Serial.println(currentR); } //////////////////// Minimal VBAT & VSYS Voltage Test + OLED display // Function: readVBAT float readVBAT() { uint16_t raw = analogRead(26); float v_adc = raw * 3.3 / 4095.0; // ADC to voltage float v_bat = v_adc * 5.7; // Divider compensation (adjust if needed) Serial.print("ADC26: "); Serial.print(raw); Serial.print(" | VBAT: "); Serial.print(v_bat, 3); Serial.println(" V"); return v_bat; } // Function: readVSYS float readVSYS() { uint16_t raw = analogRead(29); float v_adc = raw * 3.3 / 4095.0; float v_sys = v_adc * 3.0; // Typical divider factor for VSYS ADC input Serial.print("ADC29: "); Serial.print(raw); Serial.print(" | VSYS: "); Serial.print(v_sys, 3); Serial.println(" V"); return v_sys; } //////////////////// FP 0.1 + void homeAxes() { Serial.println("Starting zeroing routine..."); stepperRF.setMaxSpeed(HOMING_SPEED); stepperLF.setMaxSpeed(HOMING_SPEED); stepperRB.setMaxSpeed(HOMING_SPEED); stepperLB.setMaxSpeed(HOMING_SPEED); // --- Homing X --- stepperRF.setSpeed(100); // Set speed directly (positive or negative) stepperLF.setSpeed(-100); stepperRB.setSpeed(-100); stepperLB.setSpeed(100); while (digitalRead(LIMIT_X) == HIGH) { stepperRF.runSpeed(); stepperLF.runSpeed(); stepperRB.runSpeed(); stepperLB.runSpeed(); } Serial.println("LIMIT_X triggered. X position zeroed."); delay(200); // --- Homing Y --- stepperRF.setSpeed(-100); // Set speed directly (positive or negative) stepperLF.setSpeed(-100); stepperRB.setSpeed(-100); stepperLB.setSpeed(-100); while (digitalRead(LIMIT_Y) == HIGH) { stepperRF.runSpeed(); stepperLF.runSpeed(); stepperRB.runSpeed(); stepperLB.runSpeed(); } // --- Stop and zero stepperRF.stop(); stepperLF.stop(); stepperRB.stop(); stepperLB.stop(); stepperRF.setCurrentPosition(0); stepperLF.setCurrentPosition(0); stepperRB.setCurrentPosition(0); stepperLB.setCurrentPosition(0); Serial.println("LIMIT_Y triggered. Y position zeroed."); delay(200); // Reset relative position 0 currentX = 0; currentY = 0; currentR = 0; // Back off stepperLF.move(BACK_OFF_STEPS); stepperRB.move(BACK_OFF_STEPS); while (stepperRF.isRunning() || stepperLF.isRunning() || stepperRB.isRunning() || stepperLB.isRunning()) { stepperRF.run(); stepperLF.run(); stepperRB.run(); stepperLB.run(); } Serial.println("Zeroing complete"); } //////////////////// for Battery test without SERIAL void feedGeneratedGcode(int x_mm, int y_mm) { String cmd = "G1 X" + String(x_mm) + " Y" + String(y_mm); parseAndExecute(cmd); } //////////////////// FP V0.1 void parseAndExecute(String cmd) { cmd.trim(); cmd.toUpperCase(); lastCommandTime = millis(); digitalWrite(EN_PIN, LOW); if (cmd.startsWith("G28")) { homeAxes(); return; } if (!cmd.startsWith("G1")) { Serial.println("Invalid or unsupported command."); return; } float targetX = currentX; float targetY = currentY; float targetR = currentR; int z = -1; int xIndex = cmd.indexOf('X'); if (xIndex != -1) targetX = cmd.substring(xIndex + 1).toFloat(); int yIndex = cmd.indexOf('Y'); if (yIndex != -1) targetY = cmd.substring(yIndex + 1).toFloat(); int rIndex = cmd.indexOf('R'); if (rIndex != -1) targetR = cmd.substring(rIndex + 1).toFloat(); int zIndex = cmd.indexOf('Z'); if (zIndex != -1) z = cmd.substring(zIndex + 1).toInt(); if (z != -1) { z = constrain(z, 0, 180); servoZ.write(z); currentZ = z; Serial.print("Servo moved to "); Serial.print(z); Serial.println(" degrees"); } // Calculate deltas float deltaX = targetX - currentX; float deltaY = targetY - currentY; float deltaR = targetR - currentR; // --- 1. Move in X first --- if (deltaX != 0) { float deltaXSteps = deltaX * STEPS_PER_MM_X; long rfSteps = round(-deltaXSteps); // Only X long lfSteps = round( deltaXSteps); long rbSteps = round( deltaXSteps); long lbSteps = round(-deltaXSteps); stepperRF.move(rfSteps); stepperLF.move(lfSteps); stepperRB.move(rbSteps); stepperLB.move(lbSteps); while (stepperRF.isRunning() || stepperLF.isRunning() || stepperRB.isRunning() || stepperLB.isRunning()) { stepperRF.run(); stepperLF.run(); stepperRB.run(); stepperLB.run(); } currentX = targetX; // Update position } // --- 2. Then move in Y --- if (deltaY != 0) { float deltaYSteps = deltaY * STEPS_PER_MM_Y; long rfSteps = round( deltaYSteps); long lfSteps = round( deltaYSteps); long rbSteps = round( deltaYSteps); long lbSteps = round( deltaYSteps); stepperRF.move(rfSteps); stepperLF.move(lfSteps); stepperRB.move(rbSteps); stepperLB.move(lbSteps); while (stepperRF.isRunning() || stepperLF.isRunning() || stepperRB.isRunning() || stepperLB.isRunning()) { stepperRF.run(); stepperLF.run(); stepperRB.run(); stepperLB.run(); } currentY = targetY; // Update position } // --- 3. Optional rotation --- if (deltaR != 0) { float deltaRSteps = deltaR * STEPS_PER_DEG_R; long rfSteps = round(-deltaRSteps); long lfSteps = round( deltaRSteps); long rbSteps = round(-deltaRSteps); long lbSteps = round( deltaRSteps); stepperRF.move(rfSteps); stepperLF.move(lfSteps); stepperRB.move(rbSteps); stepperLB.move(lbSteps); while (stepperRF.isRunning() || stepperLF.isRunning() || stepperRB.isRunning() || stepperLB.isRunning()) { stepperRF.run(); stepperLF.run(); stepperRB.run(); stepperLB.run(); } currentR = targetR; // Update rotation } Serial.println("Moved to:"); Serial.print("X: "); Serial.print(currentX, 2); Serial.print(" mm"); Serial.print(" | Y: "); Serial.print(currentY, 2); Serial.print(" mm"); Serial.print(" | R: "); Serial.print(currentR, 2); Serial.println(" deg"); Serial.print("Servo Z (degrees): "); Serial.println(currentZ); } void loop() { //////////////////// Voltage measurement digitalWrite(LED_BUILTIN, HIGH); float v_bat = readVBAT(); float v_sys = readVSYS(); // OLED display u8g2.clearBuffer(); u8g2.setFont(u8g2_font_10x20_tr); char buf1[16]; snprintf(buf1, sizeof(buf1), "VBAT: %.2fV", v_bat); u8g2.drawStr(0, 20, buf1); char buf2[16]; snprintf(buf2, sizeof(buf2), "VSYS: %.2fV", v_sys); u8g2.drawStr(0, 40, buf2); u8g2.sendBuffer(); digitalWrite(LED_BUILTIN, LOW); delay(1000); //////////////////// FP V0.1 Serial input while (Serial.available()) { char c = Serial.read(); if (c == '\n' || c == '\r') { if (input.length() > 0) { parseAndExecute(input); input = ""; Serial.println("ok"); } } else { input += c; } } // Sleep mode if (millis() - lastCommandTime > INACTIVITY_TIMEOUT) { digitalWrite(EN_PIN, HIGH); // disable drivers } //////////////////// without SERIAL // LIMIT_X → Move +5mm in X if (digitalRead(LIMIT_X) == LOW) { // ====== Button pressed ====== Serial.println("Manual: Move +10mm X"); parseAndExecute("G1 X" + String(currentX + 10)); delay(20); // debounce & slow repeat } // LIMIT_Y → Move +5mm in Y if (digitalRead(LIMIT_Y) == LOW) { // ====== Button pressed ====== Serial.println("Manual: Move +10mm Y"); parseAndExecute("G1 Y" + String(currentY + 10)); delay(20); // debounce } } -
Outcome:
It demonstrated:
- Using a 12V battery to power the motors
- Stepping down 12V to 5V with a buck converter to supply power to Pico
- Implementing voltage monitoring using a voltage-divider circuit
- SPI OLED display
- Ensuring the system can operate without a USB connection to the Pico
3. Battery voltage drop
-
Overview:
- To test how the battery voltage drops, VBAT value is recorded continuously
- The program moves the machine forward, backward, right and left hand side continuously
- The battery, the buck converter, breadboard and the OLED are attached on the machine somehow
- Serial plotter displays voltage drop on PC
-
Wiring:

-
Code:
Arduino code for test:
Arduino code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
//////////////////// Voltage & Stepper Battery Test #include <U8g2lib.h> #include <AccelStepper.h> #include <Servo.h> // -------------------- OLED 128x64 -------------------- #define OLED_SCK 6 #define OLED_MOSI 7 #define OLED_RST 4 #define OLED_DC 5 #define OLED_CS 8 U8G2_SH1106_128X64_NONAME_F_4W_SW_SPI u8g2( U8G2_R0, OLED_SCK, OLED_MOSI, OLED_CS, OLED_DC, OLED_RST ); // -------------------- Stepper Pins -------------------- const int STEP_PIN_RF = 19; const int DIR_PIN_RF = 18; const int STEP_PIN_LF = 12; const int DIR_PIN_LF = 13; const int STEP_PIN_RB = 17; const int DIR_PIN_RB = 16; const int STEP_PIN_LB = 14; const int DIR_PIN_LB = 15; const int EN_PIN = 11; // -------------------- Test Settings -------------------- const int TEST_STEPS = 1000; // 一往復あたりのステップ数 const unsigned long MOVE_INTERVAL = 200; // ms bool testMode = false; // -------------------- Global -------------------- AccelStepper stepperRF(AccelStepper::DRIVER, STEP_PIN_RF, DIR_PIN_RF); AccelStepper stepperLF(AccelStepper::DRIVER, STEP_PIN_LF, DIR_PIN_LF); AccelStepper stepperRB(AccelStepper::DRIVER, STEP_PIN_RB, DIR_PIN_RB); AccelStepper stepperLB(AccelStepper::DRIVER, STEP_PIN_LB, DIR_PIN_LB); unsigned long lastMoveTime = 0; int moveDirection = 1; // 1 = forward, -1 = backward unsigned long lastVBATread = 0; // -------------------- Voltage Measurement -------------------- float readVBAT() { uint16_t raw = analogRead(26); float v_adc = raw * 3.3 / 4095.0; float v_bat = v_adc * 5.7 - 0.25; Serial.println(v_bat); // Serial Plotter用にVBATのみ出力 // Serial.println(" V"); return v_bat; } float readVSYS() { uint16_t raw = analogRead(29); float v_adc = raw * 3.3 / 4095.0; float v_sys = v_adc * 3.0; return v_sys; } // -------------------- Helper -------------------- void runAllSteppers() { while ( stepperRF.distanceToGo() != 0 || stepperLF.distanceToGo() != 0 || stepperRB.distanceToGo() != 0 || stepperLB.distanceToGo() != 0 ) { stepperRF.run(); stepperLF.run(); stepperRB.run(); stepperLB.run(); } } void setup() { Serial.begin(14101); analogReadResolution(12); pinMode(26, INPUT); // VBAT pinMode(29, INPUT); // VSYS pinMode(LED_BUILTIN, OUTPUT); pinMode(EN_PIN, OUTPUT); digitalWrite(EN_PIN, LOW); u8g2.begin(); stepperRF.setMaxSpeed(1500); stepperRF.setAcceleration(2000); stepperLF.setMaxSpeed(1500); stepperLF.setAcceleration(2000); stepperRB.setMaxSpeed(1500); stepperRB.setAcceleration(2000); stepperLB.setMaxSpeed(1500); stepperLB.setAcceleration(2000); Serial.println("Type 'START' to begin test, 'STOP' to stop."); } // Movement pattern: 0=F, 1=R, 2=B, 3=L int movementStep = 0; void moveForward() { stepperRF.move(TEST_STEPS); stepperLF.move(TEST_STEPS); stepperRB.move(TEST_STEPS); stepperLB.move(TEST_STEPS); } void moveBackward() { stepperRF.move(-TEST_STEPS); stepperLF.move(-TEST_STEPS); stepperRB.move(-TEST_STEPS); stepperLB.move(-TEST_STEPS); } void moveRight() { stepperRF.move(TEST_STEPS); stepperLF.move(-TEST_STEPS); stepperRB.move(-TEST_STEPS); stepperLB.move(TEST_STEPS); } void moveLeft() { stepperRF.move(-TEST_STEPS); stepperLF.move(TEST_STEPS); stepperRB.move(TEST_STEPS); stepperLB.move(-TEST_STEPS); } void loop() { // -------------------- Serial Command -------------------- if (Serial.available()) { String cmd = Serial.readStringUntil('\n'); cmd.trim(); cmd.toUpperCase(); if (cmd == "START") { testMode = true; Serial.println("Test started"); } if (cmd == "STOP") { testMode = false; Serial.println("Test stopped"); } } // -------------------- Voltage & OLED (every 1 sec) -------------------- if (millis() - lastVBATread >= 1000) { // 1000 ms = 1 sec lastVBATread = millis(); float v_bat = readVBAT(); float v_sys = readVSYS(); u8g2.clearBuffer(); u8g2.setFont(u8g2_font_10x20_tr); char buf1[16]; snprintf(buf1, sizeof(buf1), "VBAT: %.2fV", v_bat); char buf2[16]; snprintf(buf2, sizeof(buf2), "VSYS: %.2fV", v_sys); u8g2.drawStr(0, 20, buf1); u8g2.drawStr(0, 40, buf2); u8g2.sendBuffer(); // LED blink to indicate sampling digitalWrite(LED_BUILTIN, HIGH); delay(10); digitalWrite(LED_BUILTIN, LOW); } // -------------------- Test Mode Movement -------------------- if (testMode && millis() - lastMoveTime > MOVE_INTERVAL) { lastMoveTime = millis(); switch (movementStep) { case 0: moveForward(); break; case 1: moveRight(); break; case 2: moveBackward(); break; case 3: moveLeft(); break; } runAllSteppers(); movementStep++; if (movementStep > 3) movementStep = 0; // Loop back to forward } }Python code (PySerial):
- Connects to the Arduino’s serial port using pyserial
- Reads incoming serial data (VBAT values printed by Arduino)
- Parses and stores data in a CSV file with timestamp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
import serial import csv from datetime import datetime # Serial ser = serial.Serial('/dev/tty.usbmodem14101', 14101) # Make CSV file and writer csv_file = open("vbat_log.csv", "a", newline="") writer = csv.writer(csv_file) print("Logging started... (Ctrl+C to stop)") try: while True: line = ser.readline().decode("utf-8", errors="ignore").strip() print(line) # --- Save to CSV with timestamp --- timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") writer.writerow([timestamp, line]) except KeyboardInterrupt: print("Logging stopped.") finally: csv_file.close() ser.close()Run the Python script (Terminal):
python3 myscript.py -
Outcome:
- 39 minutes of continuous operation test.
- Battery voltage dropped from approximately 11.9 V to 11.6 V.
Voltage graph:

- Trendline:
y = -9.44E-05 * x(x = Timestamp (sec), y = Vbat (V)) - Voltage drop:
0.0000944 V / sec ≈ 0.34 V / h - Time until 12.6V drops to 10.8V:
(12.6V - 10.8V) / 0.34V/h ≈ 5.29 h
Estimated maximum continuous operating time: 5.29 h
- Battery: 6000 mAh 12.6 V - 10.8 V
- AccelStepper setting:
MaxSpeed: 1500, Acceleration: 2000
4. Maximum current
-
Overview:
-
Calculate the maximum current based on the
I_limitset in the A4988 motor driverCurrent limit formula:
I_limit = V_REF / (8 * R_SENSE)Examples:
-
V_REF setting: 0.5 V (Final project V0.1):
I_limit = 0.5 V / (8 * 0.068Ω) ≈ 1.47 A I_total = 4 x 0.92 A ≈ 3.68 A -
V_REF setting: 0.8 V:
I_limit = 0.8 V / (8 * 0.068Ω) ≈ 0.92 A I_total = 4 x 0.92 A ≈ 5.88 A
-
-
Use a multimeter to measure the maximum current the machine consumes
-
-
Wiring:
- Connect a multimeter in series with the 12v line
*This test was abandoned due to lack of parts for wiring the multimeter in series, and attempting it with jump wires and alligator clips seems unsafe.
Interface
- SPI: PMW3901 optical flow sensor
- I2C: OLED
- UART with XIAO ESP32, RP2040