
platformIO
Visual studio code plugin

Leo Kuipers – l.a.Kuipers@saxion.nl

What is platformIO?

• In short:
• Embedded C/C++ development toolset built on top of Microsoft's Visual

Studio Code
• In marketing:

• PlatformIO is a cross-platform, cross-architecture, multiple framework,
professional tool for embedded systems engineers and for software
developers who write applications for embedded products.

In other words:
• Cross-platform IDE which supports many different C/C++ software

development kits (SDKs, called Frameworks in platformIO) and
includes a lot of sophisticated developer tools.

Why platformIO?

• It just works better.
• Arduino IDE is a meh editor.
• Visual Studio Code is a proper IDE.
• VS Code “Extensions” add a lot of functionality. E.g.:

• C/C++ Intellisense  = Autocomplete!
• Git directly from within the editor
• Github Copilot  Use Copilot AI to help you to program code

• PlatformIO adds embedded programming to Visual Studio Code.

SDK? Framework?

• You don’t want to start from scratch. Really…
• You want to use a toolbox filled with tools that are known to work

• Libraries with pre-written code so you don’t have to write it again
• Compilers/linkers for the specific microcontroller that you use
• Connectivity tools to upload your code to the microcontroller
• Etc.

• In software terms, that toolbox is an SDK: Software Development Kit.
• There are many SDKs for microcontrollers. Some are specific to a

microcontroller family. Some are general purpose, like Arduino SDK.
• PlatformIO calls this a Framework.

How to install platformIO?

• Install visual studio code: code.visualstudio.com
• Make sure also to install the C/C++ Intellisense extension

• Install PlatformIO plugin for visual studio code

How to “open” platformIO?

Create a project

• Create a new project
• Give it a name
• Select your microcontroller
• Select the framework you want to use

platformio.ini

• Creating a platformIO project will generate a platformio.ini file
• Core settings are defined in this file (e.g. which board, which

framework)
• You can always manually change these settings (e.g. when you want

the same code to run on a different board)

RP2040 with Arduino framework
Using platformIO

Raspberry Pi Pico RP2040 and platformIO

• Can I use RP2040 with Arduino framework on platformIO?
• Yes, but…

• For RP2040 there are 2 Arduino frameworks
1. Official ArduinoCore-mbed from Arduino based on Arduino APIs, running on top of

Mbed OS
• Mbed platform will reach end-of-life in july 2026
• Source https://github.com/platformio/platform-raspberrypi/issues/66

2. Community-made Earle Philhower’s Arduino-Pico based on Arduino APIs, using
official Raspberry Pi Pico SDK
• Not officially supported by platformIO
• Source https://community.platformio.org/t/request-to-add-platformio-support-for-earle-

philhowers-arduino-pico-raspberry-pi-pico-sdk/22285

• So you want to use Earle Philhower’s Arduino Pico!

https://github.com/platformio/platform-raspberrypi/issues/66
https://community.platformio.org/t/request-to-add-platformio-support-for-earle-philhowers-arduino-pico-raspberry-pi-pico-sdk/22285
https://community.platformio.org/t/request-to-add-platformio-support-for-earle-philhowers-arduino-pico-raspberry-pi-pico-sdk/22285

Raspberry Pi Pico RP2040 and platformIO

• Will there be official support for Earle Philhower’s Arduino Pico?
• platformIO is a for-profit organization
• Their business model is that silicon manufacturers pay them to get their

microcontrollers officially supported in platformIO.
• Raspberry Pi ltd. doesn’t want to pay the fee, so no official support.
Source https://github.com/platformio/platform-raspberrypi/pull/36

• Fortunately the community knows how to deal with this:
https://arduino-pico.readthedocs.io/en/latest/platformio.html

https://github.com/platformio/platform-raspberrypi/pull/36
https://arduino-pico.readthedocs.io/en/latest/platformio.html

But first: fix Windows

• By default, Windows has a limited path length that is not long enough
• Step 0: Install Git for Windows https://git-scm.com/downloads/win
• Step 1: Enable long paths in git
• Step 2: Enable long paths in Windows OS
• Step 3: Reboot

• See: https://arduino-
pico.readthedocs.io/en/latest/platformio.html#important-steps-for-
windows-users-before-installing

https://git-scm.com/downloads/win
https://arduino-pico.readthedocs.io/en/latest/platformio.html#important-steps-for-windows-users-before-installing
https://arduino-pico.readthedocs.io/en/latest/platformio.html#important-steps-for-windows-users-before-installing
https://arduino-pico.readthedocs.io/en/latest/platformio.html#important-steps-for-windows-users-before-installing

Raspberry Pi Pico RP2040 and platformIO

• Create a new project
• Select Raspberry Pi Pico
• Select Arduino
• Click Finish
• Change the generated platformio.ini file

[env:pico]
platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico
framework = arduino
board_build.core = earlephilhower

Xiao RP2040 + Arduino with platformIO

• Where is Xiao RP2040?

• Solution: Create a project for raspberry pi pico and change
platformio.ini

[env]
platform = https://github.com/maxgerhardt/platform-raspberrypi.git
framework = arduino
board_build.core = earlephilhower
board_build.filesystem_size = 0.5m
[env:seeed_xiao_rp2040]
board = seeed_xiao_rp2040

Project folder overview

• src folder: place your source code here
• lib folder: place for project specific libraries

• main.cpp will be your main program!

Compile & run

• Build & upload commands can be found in the bottom-left bar:

• Upload will try to automatically discover the upload port. You can
manually define the upload port in platformio.ini:

upload_port = COM10

But first: Fix windows

• Windows users can run into the following error message when
uploading:

• Solution: Download zadig at https://zadig.akeo.ie/
• Run zadig and install winUSB driver

No new RPxxxx device found yet, waiting..
Warning: Picotool did not detect any RPxxxx devices in BOOTSEL mode. Upload might fail.
Uploading .pio\build\seeed_xiao_rp2040\firmware.elf
No accessible RP2040/RP2350 devices in BOOTSEL mode were found.
but:
Device at bus 1, address 24 appears to be a RP2040 device in BOOTSEL mode, but picotool was unable to connect. You may need to install a
driver via Zadig. See "Getting started with Raspberry Pi Pico" for more information

https://zadig.akeo.ie/

Blink 3 LEDs
#include <Arduino.h>

void setup() {
// put your setup code here, to run once:
pinMode(PIN_LED_R, OUTPUT);
pinMode(PIN_LED_G, OUTPUT);
pinMode(PIN_LED_B, OUTPUT);
digitalWrite(PIN_LED_R, HIGH);
digitalWrite(PIN_LED_G, HIGH);
digitalWrite(PIN_LED_B, HIGH);

}
void loop() {
// put your main code here, to run repeatedly:
digitalWrite(PIN_LED_R, LOW);
delay(200);
digitalWrite(PIN_LED_R, HIGH);
delay(200);
digitalWrite(PIN_LED_G, LOW);
delay(200);
digitalWrite(PIN_LED_G, HIGH);
delay(200);
digitalWrite(PIN_LED_B, LOW);
delay(200);
digitalWrite(PIN_LED_B, HIGH);
delay(200);

}

// XIAO RP2040 pins:

// pin 4 (D4) = I2C SDA
// pin 5 (D5) = I2C SCL
// pin 6 (D6) = UART TX
// pin 7 (D7) = UART RX / SPI Chip select
// pin 8 (D8) = SPI SCK
// pin 9 (D9) = SPI MISO
// pin 10 (D10) = SPI MOSI
// pin 11 = enable pin of RGB LED
// (high = enabled)
// pin 12 = WS2812 data pin
// pin 16 = onboard green LED (use PIN_LED_G)
// pin 17 = onboard red LED (use PIN_LED_R)
// pin 25 = onboard blue LED (use PIN_LED_B)

// for ONBOARD LEDs: HIGH = OFF, LOW = ON

Add a library

• platformio.ini now contains the lib:
lib_deps = fastled/FastLED@^3.9.13

Blink the RGB LED
#include <Arduino.h>
#include <FastLED.h>
#define RGB_LED_ENABLE 11
#define RGB_DATA_PIN 12
#define NUM_LEDS 1
// Define the array of leds
CRGB leds[NUM_LEDS];
void setup() {
pinMode(PIN_LED_R, OUTPUT);
pinMode(PIN_LED_G, OUTPUT);
pinMode(PIN_LED_B, OUTPUT);
digitalWrite(PIN_LED_R, HIGH);
digitalWrite(PIN_LED_G, HIGH);
digitalWrite(PIN_LED_B, HIGH);
pinMode(RGB_LED_ENABLE, OUTPUT);
digitalWrite(RGB_LED_ENABLE, HIGH); // enable RGB LED
FastLED.addLeds<NEOPIXEL, RGB_DATA_PIN>(leds, NUM_LEDS);

}

void loop() {
leds[0] = CRGB::Red;
FastLED.show();
delay(200);
leds[0] = CRGB::Black;
FastLED.show();
delay(200);
leds[0] = CRGB::Green;
FastLED.show();
delay(200);
leds[0] = CRGB::Black;
FastLED.show();
delay(200);
leds[0] = CRGB::Blue;
FastLED.show();
delay(200);
leds[0] = CRGB::Black;
FastLED.show();
delay(200);

}

Common pitfalls

• If using Arduino framework, main.cpp should start with
 #include <Arduino.h>
• In Arduino IDE this is done automagically and is hidden from the user.

Common pitfalls

• Forward declaration of functions is required!
• Arduino IDE does this automatically for you. PlatformIO doesn’t.

Rule of thumb: copy the first line of the function
definition and add a semicolon after it.

void myFunction();
void myFunctionWithParameters(int a, int b);

Further reading

• https://docs.platformio.org/en/latest/integration/ide/vscode.html#in
stallation

• https://docs.platformio.org/en/latest/core/index.html
• https://docs.platformio.org/en/latest/projectconf/index.html

https://docs.platformio.org/en/latest/integration/ide/vscode.html#installation
https://docs.platformio.org/en/latest/integration/ide/vscode.html#installation
https://docs.platformio.org/en/latest/core/index.html
https://docs.platformio.org/en/latest/projectconf/index.html

	platformIO
	What is platformIO?
	Why platformIO?
	SDK? Framework?
	How to install platformIO?
	How to “open” platformIO?
	Create a project
	platformio.ini
	RP2040 with Arduino framework
	Raspberry Pi Pico RP2040 and platformIO
	Raspberry Pi Pico RP2040 and platformIO
	But first: fix Windows
	Raspberry Pi Pico RP2040 and platformIO
	Xiao RP2040 + Arduino with platformIO
	Project folder overview
	Compile & run
	But first: Fix windows
	Blink 3 LEDs
	Add a library
	Blink the RGB LED
	Common pitfalls
	Common pitfalls
	Further reading

