

LDX-218 数字舵机

1.产品概述

这是一款常见的数字舵机。使用时,我们只需要在信号端发送一次周期为 20ms 的 PWM 信号,然后通过调节脉冲宽度来调节舵机角度。我们可以设置的脉冲宽度范围为 500~2500 µs,它对应的角度为 0~180°。

同时这款舵机具有控制精度高、线性度好、响应速度快和扭力大等特点,常用于各种仿 生机器人的关节设计。

2.参数说明

2.1 规格参数

工作电压

深圳市幻尔科技有限公司 Hiwonder

空载电流	100mA
堵转电流	2.4~3A
控制方式	PWM 脉宽控制
PWM 脉宽范围	500~2500 μs,应 0~180°
脉冲周期	20ms
转动速度	0.16sec/60° (DC 7.4V)
堵转扭矩	15kg.cm (DC 6V) 17kg.cm (DC 7.4V)
转动范围	0~180°
舵机精度	0.3°
配线线长	30cm
齿轮类型	金属齿
接插件型号	PH2.0-3P
产品尺寸	40mm*20mm*51.4mm
产品重量	56g
适用于	各种仿生机器人关节

Shenzhen Hiwonder Technology Co., Ltd.

2.2 舵机尺寸图

单位: mm

2.3 接口说明

引脚	引脚说明
白色接线	信号线
黑色接线	电源正极
黑色接线	地线

Hiwonder I 深圳市幻尔科技有限公司 Shenzhen Hiwonder Technology Co., Ltd.

3.案例使用

为了帮助大家快速上手,我们提供一个和 UNO 主板搭配使用的案例。

3.1 准备工作

使用前需要准备以下配件:

- ① UNO 主板 1 块
- ② LDX-218 数字舵机 1 个
- ③ USB 数据线 1 根
- ④ 公对公杜邦线3根
- ⑤ 配套接线1根

3.2 接线图

通过公对公杜邦线将舵机连接至 UNO 主板上,连接示意图如下所示:

3.3 实验流程

1) 在电脑上下载并安装 Arduino IDE,具体的操作方法,可以参考本节同目录下的"开发环境搭建"文档。

Hiwonder | 深圳市幻尔科技有限公司 Shenzhen Hiwonder Technology Co., Ltd.

2) 参照接线图将 LDX-218 数字舵机连接在 UNO 主板上。

3) 将 UNO 主板通过 USB 线连入电脑。打开 Arduino IDE, 依次点击"File->New",
 将"3.5 示例代码"复制进去。

4) 选择正确的开发板及端口,将程序编译并上传。

5) 代码上传成功后,观察现象。

3.4 示例结果

舵机在0°和180°范围内来回摆动。

3.5 示例代码

/*****LDX-218 数字舵机测试程序******
* Arduino 型号: Arduino UNO
***************************/
int servopin=8;
int pulsewidth;
int val;
void servo(int myangle)
{
pulsewidth=map(myangle,0,270,500,2500);
digitalWrite(servopin,HIGH);
delayMicroseconds(pulsewidth);
digitalWrite(servopin,LOW);

delay(20-pulsewidth/1000);
}
void setup()
{
pinMode(servopin,OUTPUT);
}
void loop()
{
servo(0);
delay(1000);
servo(270);
delay(1000);

4.常见问题

}

Q1:测试时,代码上传成功后,测试无现象?

A: 检查接线, 舵机信号端需接 UNO 主板的 D8 接口(和代码中设置一致)。

Q2:测试时,我们应该如何给 UNO 主板供电?

A:测试时,我们给黑色 DC 头外接电源,同时给 UNO 主板和舵机供电。UNO 主板的 供电电压范围: DC 7-12V, 舵机的工作电压范围为 DC 6-8.4V。

因此我们提供的电源电源,需要满足以上两个要求,范围应在: DC 7-8.4V。