
14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The Inter-Integrated Circuit (I2C) standard is a serial interface

implement with a two-wire link that can support multiple masters and

multiple slaves.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The Inter-Integrated Circuit (I2C) standard is a serial interface

implement with a two-wire link that can support multiple masters and

multiple slaves.

Providing a clock
allows higher data
rates over UART.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The Inter-Integrated Circuit (I2C) standard is a serial interface

implement with a two-wire link that can support multiple masters and

multiple slaves.

Providing a clock
allows higher data
rates over UART.

The two-wire
interface allows
devices to be added
without increasing
the number of lines
like on SPI.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• An I2C bus contains a clock line (SCK) and data line (SDA).

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• An I2C link is always half-duplex, meaning that all devices share the

data line with only one device transmitting at any given time.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• An I2C bus ALWAYS needs external pull-up resistors on each of its lines.

• These can’t be implemented on the MCU because the resistor function is only

available when the port is configured as an INPUT.

• Since I2C is bidirectional, we never know wither the pin will be an input or

output.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Master – the

device that initiates

communication

and controls the

clock.

• Multiple masters

are also supported

on an I2C bus.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Slave – a device on

the bus that is read or

written to, but does not

initiate transmission or

provide a clock.

• Slave address – a

unique and

predetermined address

for each slave on the

bus.

• This address is used

by the master to

indicate which slave it

wants to communicate

with.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Idle – when both

SDA and SCL are

held high by the

pull-up resistors

and no I2C device

is attempting to

communicate.

• Busy – when

devices are driving

the bus.

• Messages – how

I2C information is

transferred.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• A master initiates a

new message by

generating a

START (S)

condition by pulling

SDA LOW while

SCL is still HIGH.

• As soon as the

START condition is

generated, the SCL

will be pulled LOW

and start pulsing to

provide the clock

for the message.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The master is

responsible for

pulsing the clock.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Each clock pulse

within the I2C

message is

numbered by

periods.

• Both the master

and the slaves

count the number

of periods that

have occurred

since the message

started in order to

know when certain

frames and signals

should be present.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• After the master

generates the

START condition, it

first sends the

slave address that

it wishes to

communicate with.

• I2C slave

addresses can

either be 7-bit

(default) or 10-bit.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The slave address

is followed by the

read/write signal

indicating which

type of transaction

is being requested

in the message.

• The START

condition, slave

address, and

read/write signal

constitute periods

1 → 8.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Period 9 of the

message is

reserved for the

slave acknowledge

(ACK) or no-

acknowledge

(NACK) signal.

• After the slave

address and

read/write signal

are sent by the

master, each slave

on the bus checks

whether it is being

addressed.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• If a slave exists with

the specified slave

address, it will send

an ACK signal back

to the master by

pulling SDA LOW.

• If no device exists

with the specified

slave address, no

device will pull down

SDA. This will result

in period 9

remaining HIGH and

will be interpreted

as a NACK.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• If the master sees

the ACK signal, it

knows a slave exists

with the specified

address and

proceeds with the

message.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• After each byte is

sent, the receiving

device sends an

ACK signal

indicating that it

successfully

received the data.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• A STOP condition

occurs when there

is a LOW-to-HIGH

transition on SDA

while SCL is HIGH.

• Once, SDA goes

HIGH, SCL also

remains HIGH

indicating that the

bus is idle again.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• A NACK in period 9

tells the master that

no slave exists with

the specified

address.

• The master then

generates a STOP

condition and ends

the message.
NACK

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

Image Courtesy of

Recording Connection of Canada

Image Courtesy of

Recording Connection of Canada

Image Courtesy of

Recording Connection of Canada

Image Courtesy of

Recording Connection of Canada

• When the master is writing to a slave, the master sends the 8-bits of

data and the slave produces the ACK/NACK signal.

• When the master is reading from a slave, the slave sends the 8-bits

of data and the master produces the ACK/NACK signal.

• After the data has been sent and acknowledged, the master can end

the message by generating the STOP condition anytime.

Image Courtesy of

Recording Connection of Canada

Image Courtesy of

Recording Connection of Canada

Image Courtesy of

Recording Connection of Canada

Image Courtesy of https://neodem.wp.horizon.ac.uk/

https://neodem.wp.horizon.ac.uk/

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The Master can send multiple data bytes in a single message.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• I2C devices contain

individual registers that

hold their information.

• In the simplest case, an

I2C device contains only

a single register.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Writing to a slave with a

single register.

o The master initiates the

message by sending the S

bit.

o The master provides the

slave address and a WRITE

signal.

o The slave ACKs to indicate it

is ready.

o The master writes the data.

o The slave sends an ACK

that it got the data.

o The master ends the

message by sending the P

bit.

No register
address is needed.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• Reading from a slave with

a single register.

o The master initiates the

message by sending the S bit.

o The master provides the slave

address and a WRITE signal.

o The slave ACKs to indicate it

is ready.

o The slave sends the data.

o The master sends a NACK to

stop the slave from sending

more data.

o The master ends the

message by sending the P bit.

No register
address is needed.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• When an I2C device has

multiple registers, each is

assigned a register

address.

• To access a specific register

in the slave, the master

needs to provide the

register address in the

message.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• For a write transaction, the

master generates an I2C

message that first provides

the slave address, then

provides the register

address to access, then

provides the data to be

written.

• After each frame, the slave

sends an ACK signal.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The master can also write a

block of data to registers.

• The slave automatically

increments the starting

address after each byte of

data is written.

• The master still sends the

slave address, the write

signal, and the starting

register address.

• The next byte of data that is

sent goes into the first

register address location.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The slave will continue to

increment its register

address until it sees the

STOP condition generated

by the master.

Check the slave’s datasheet
for details!!!

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• When reading from a device

that contains multiple registers,

two message are needed.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• When reading from a device

that contains multiple registers,

two message are needed.

• The first message sets the

register address within the

slave that will be read from

using a write transaction.

• The first message puts the

slave into a mode where it’s

expecting a second message

that will read data from the

register address that was just

sent.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The second message

performs a read

transaction that retrieves

the data from the register

address sent in the first

message.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• An alternative approach can also be used where a second START

(Sr) condition is generated before the STOP condition of the first

message.

• This initiates the second read transaction immediately without giving

up control of the bus.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• The master can also read

blocks of data from a

slave.

• In this situation, the

master still sends two

messages, the first setting

the register address and

the second retrieving the

data.

• In the second message,

the master continually

sends SCL pulses to read

as many bytes as it wants

prior to generating the

STOP condition.

14.3 INTER-INTEGRATED CIRCUIT (I2C) BUS

14.3.1 THE I2C PROTOCOL

CH. 14: SERIAL COMMUNICATION IN C

• A repeated Start bit (Sr)

can also be used to read

blocks of information.

	Slide 1: Ch. 14: Serial Communication in C
	Slide 2: Ch. 14: Serial Communication in C
	Slide 3: Ch. 14: Serial Communication in C
	Slide 4: Ch. 14: Serial Communication in C
	Slide 5: Ch. 14: Serial Communication in C
	Slide 20: Ch. 14: Serial Communication in C
	Slide 21: Ch. 14: Serial Communication in C
	Slide 22: Ch. 14: Serial Communication in C
	Slide 23: Ch. 14: Serial Communication in C
	Slide 24: Ch. 14: Serial Communication in C
	Slide 25: Ch. 14: Serial Communication in C
	Slide 26: Ch. 14: Serial Communication in C
	Slide 27: Ch. 14: Serial Communication in C
	Slide 28: Ch. 14: Serial Communication in C
	Slide 29: Ch. 14: Serial Communication in C
	Slide 30: Ch. 14: Serial Communication in C
	Slide 31: Ch. 14: Serial Communication in C
	Slide 32: Ch. 14: Serial Communication in C
	Slide 33: Ch. 14: Serial Communication in C
	Slide 34: Ch. 14: Serial Communication in C
	Slide 35: Ch. 14: Serial Communication in C
	Slide 36: Ch. 14: Serial Communication in C
	Slide 37: Ch. 14: Serial Communication in C
	Slide 38: Ch. 14: Serial Communication in C
	Slide 39: Ch. 14: Serial Communication in C
	Slide 40: Ch. 14: Serial Communication in C
	Slide 41: Ch. 14: Serial Communication in C
	Slide 42: Ch. 14: Serial Communication in C
	Slide 43: Ch. 14: Serial Communication in C
	Slide 44: Ch. 14: Serial Communication in C
	Slide 45: Ch. 14: Serial Communication in C
	Slide 46: Ch. 14: Serial Communication in C
	Slide 47: Ch. 14: Serial Communication in C
	Slide 48: Ch. 14: Serial Communication in C
	Slide 49: Ch. 14: Serial Communication in C
	Slide 50: Ch. 14: Serial Communication in C

