
Bare Metal Programming
Yes, let’s take a byte out of this apple

(I am sorry I am dad and grandfather and I live for these puns.

This presentation is partially based on the 
podcasts by Mitch Davis - Bare-Metal MCU



Bare Metal Programming
Why?  Speed and Efficiency



Bare Metal Programming
When we mentioned Arduino 
Bootloader earlier in the 
class, we spoke about memory.

Specific memory blocks are 
called registers



Bare Metal Programming

Registers are memory blocks 
containing essential data for 
controlling or setting up 
microcontrollers.



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Registers are memory blocks containing essential 
data for controlling or setting up microcontrollers.



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Ok, but what is a register exactly?



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Registers are memory blocks containing essential 
data for controlling or setting up microcontrollers.



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Look at our Arduino code to use a momentary switch 
with a LED.

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);   DDR Responsibility
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin,INPUT_PULLUP); DDR Responsibility
  }

void loop() {
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed. If it is, the 
buttonState is HIGH:
  if (buttonState == HIGH) {
    // turn LED on:
    digitalWrite(ledPin, HIGH);
  } else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Look at our Arduino code to use a momentary switch 
with a LED.

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);  
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin,INPUT_PULLUP); 
  }

void loop() {
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed. If it is, the 
buttonState is HIGH:
  if (buttonState == HIGH) {
    // turn LED on:  
    digitalWrite(ledPin, HIGH); Port Responsibility
  } else {
    // turn LED off: 
    digitalWrite(ledPin, LOW); Port Responsibility

  }
}



Bare Metal Programming
Each port is controlled by 
three registers, which are 
also defined variables in the 
arduino language. The DDR 
register, determines whether 
the pin is an INPUT or OUTPUT. 
The PORT register controls 
whether the pin is HIGH or 
LOW, and the PIN register 
reads the state of INPUT pins 
set to input with pinMode().

Look at our Arduino code to use a momentary switch 
with a LED.

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);  
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin,INPUT_PULLUP); 
  }

void loop() {
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin); Pin Responsibility

  // check if the pushbutton is pressed. If it is, the 
buttonState is HIGH:
  if (buttonState == HIGH) Pin Responsibility
  {
    // turn LED on:      digitalWrite(ledPin, HIGH);
  } else {
    // turn LED off: 
    digitalWrite(ledPin, LOW);
  }
}



Bare metal Programming

We need a quick review of bits and bytes.



Bare metal Programming

We need a quick review of bits and bytes.



Bare metal Programming

We need a quick review of bits and bytes.



Bare metal Programming
Please note:  The Arduino Port Registers are 8 bit.

We need a quick review of bits and bytes.

0 0 1 1 0 0 1 0

0 0 32 16 0 0 2 0

50 = 0+0+32+16+0+02+0 

The decimal equivalent of 00110010 is 50



Bare metal Programming
Please note:  The Arduino Port Registers are 8 bit.

             Convert 00100010 to decimal

We need a quick review of bits and bytes.

0 0 1 0 0 0 1 0

What is the decimal equivalent? 



Bare metal Programming
Please note:  The Arduino Port Registers are 8 bit.

             Convert 00100010 to decimal

We need a quick review of bits and bytes.

0 0 1 0 0 0 1 0

0 0 32 0 0 0 2 0

What is the decimal equivalent?  34 = 32 +2 



Bare Metal Programming
Port Register
How to:



Bare Metal Programming
Let’s return back to the 
Arduino.   PLease review 
how we would program the 
BuiltIn LED pin (13) to 
blink using Arduino code.

   



Bare Metal Programming
// C++ code

void setup()

{

  pinMode(LED_BUILTIN, OUTPUT);

}

void loop()

{

  digitalWrite(LED_BUILTIN, HIGH);

  delay(1000); // Wait for 1000 millisecond(s)

  digitalWrite(LED_BUILTIN, LOW);

  delay(1000); // Wait for 1000 millisecond(s)

}

Want to see it work?  Please access 
Circuit in TinkerCad.   Select an 
Arduino and review how to program 
Pin 13 or the BuiltIn Pin See link

https://www.tinkercad.com/things/6oC8Aje3D8O-example-1-bare-metal-standard-blink-pin-13/editel?sharecode=wXXFp5AVp8RH8DNYU8Z5LPzRpoVAIR02kte9niRn4QI


Bare Metal Programming
Port B has an 8 Bit Register

PortB0  Digital Pin 8    

PortB1  Digital Pin 9

PortB2 Digital Pin 10

PortB3  Digital Pin 11

PortB4  Digital Pin 12

PortB5  Digital Pin 13  (LED_BUILTIN);

We cannot access PortB6 or PORTB

We want to turn on Pin13

Therefore all the ports are set to Zero except for PortB5 

00100000 binary

00320000 = 0+0+32+0+0+0+0

00100000 binary is the equivalent of 32 decimal

Port Bin Dec

B0 0 0

B1 0 0

B2 0 0

B3 0 0

B4 0 0

B5 1 32

B6 0 0

B7 0 0



Bare Metal Programming
Now use the decimal 
equivalent to turn on BUILTIN 
LED

HINT 32

Click here for solution

https://www.tinkercad.com/things/esnvfbGKun0-lesson-2-bare-metal-programming-blink-13-pin-port-b-decimal/editel?sharecode=AnYxAzOjyjZ7FtR7WA24t6brDVLLXdtc8_mKZ9XwDpk


Bare Metal Programming
Now use turn on digital pin 9 
using the PORT variable to 
turn on a LED.

HINT:  You will need a 
breadboard, resistor and LED

Click here for solution

https://www.tinkercad.com/things/g82A8YFio7V-bare-metal-programming-blink-9-pin/editel?sharecode=gd4A6AgvXau8rD7Fit-hCiawLsNB5eN0bt80obydVIk


Bare Metal Programming
 DDR Register
How to:



Bare Metal Programming
void setup()

{

//pinMode(LED_BUILTIN, OUTPUT);

  DDRB = 32;// B010000 sets PB5 as OUTPUT PB5 is 0010000  
or 32

}

void loop()

{

  PORTB=32;  //0010000;

  delay(2000); // Wait for 1000 millisecond(s)

  PORTB=0;

  delay(1000); // Wait for 1000 millisecond(s)

}

Click here for solution

https://www.tinkercad.com/things/guGhqWOJhlW-bare-metal-programming-blink-13-pin-setup-ddrb/editel?sharecode=QHkvdl4hqve58P3_wSxXHShe2Nyo8Qz52R7buxCapZI


Bare Metal Programming
Now go ahead and change 
the DDR register 
variable to suit Pin 9



Bare Metal Programming - memory & Pointers



Bare Metal Programming - memory & Pointers



Bare Metal Programming - memory & Pointers
So how do we 
write 32 to Ox25 
(PORTB)?



Bare Metal Programming - memory & Pointers
So how do we 
write 32 to Ox25 
(PORTB)?

We use pointers!  



Bare Metal Programming - memory & Pointers
So how do we 
write 32 to Ox25 
(PORTB)?

We use pointers!  

A Pointer in the C 
language is a variable 
that points to the 
memory location of 
another variable 
memory address.   



Bare Metal Programming - memory & Pointers
We use pointers!  

A Pointer in the C language is a variable that points to the memory 
location of another variable memory address.   

Simple Example

int classicVariable = 16;  // create a “classic integer variable

int* pointerToClassicVariable = &classicVariable;  //create a pointer to “point” to classicVariable or reference the variable

* pointerToClassicVariable = 32;  //dereference  pointerToClassicVariable and assign 32 to classicVariable



Bare Metal Programming - memory & Pointers
We use pointers!  

A Pointer in the C language is a variable that points to the memory 
location of another variable memory address.   

So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25



Bare Metal Programming - memory & Pointers
So how do we write 32 to Ox25 (PORTB)?

void setup()
{
DDRB = 32;// B010000 sets PB5 as OUTPUT PB5 is 0010000  or 32 );
}
void loop()
{
  volatile byte* pointerToRegisterB = 0x25;
  *pointerToRegisterB = 32;      //PORTB=32;// PORTB is from pinout 32 decimal
      
  delay(2000); // Wait for 1000 millisecond(s)

  *pointerToRegisterB = 0;  //PORTB=0; //PORTB 0 decimal
  
delay(1000); // Wait for 1000 millisecond(s)
}



Bare Metal Programming - memory & Pointers
So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25

Wow, can we do this all on one line?  I don’t type well



Bare Metal Programming - memory & Pointers

* ( (volatile byte*) 0x25) = 32;

Ok, I guess if you say so.

So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25

Wow, can we do this all on one line?  I don’t type well
Well, yes we can



Bare Metal Programming - memory & Pointers

* ( (volatile byte*) 0x25) = 32;

We assign the memory address 0x25 to a pointer

So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25

We can so let me show you.



Bare Metal Programming - memory & Pointers

* ( (volatile byte*) 0x25) = 32;

We dereference it with * and assign the 0x25 to 32

So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25

We can say so. Let me show you.



Bare Metal Programming - memory & Pointers

* ( (volatile byte*) 0x25) = 32;

We dereference it with * and assign the 0x25 to 32

So how do we write 32 to Ox25 (PORTB)?

volatile byte*  pointerToRegisterB = 0x25;  // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32;  //dereference  pointerToRegisterB and assign 32 to memory location to Ox25

We can say so. Let me show you.



Bare Metal Programming - memory & Pointers
So how do we write 32 to Ox25 (PORTB)?

void loop()
{
   /* volatile byte* memoryPointer = (volatile byte*) 0x25;// we are assigning 0x25 memory to memoryPointer
     
  *memoryPointer=32; */
   
  * ( (volatile byte*) 0x25) = 32;  //replaces two lines of the above code

    delay(2000); // Wait for 1000 millisecond(s)

 * ( (volatile byte*) 0x25) = 0;

  delay(1000); // Wait for 1000 millisecond(s)
}



Bare Metal Programming - memory & Pointers
So how do we write 32 to Ox25 (PORTB)?

void loop()
{
     
  * ( (volatile byte*) 0x25) = 32;  //replaces two lines of the above code

    delay(2000); // Wait for 1000 millisecond(s)
   
   * ( (volatile byte*) 0x25) = 0;

      delay(1000); // Wait for 1000 millisecond(s)
}

This is good.  We can make it better by using the #define



Bare Metal Programming - memory & Pointers
#define blink13    * ( (volatile byte*) 0x25)

void setup()
{
  
DDRB = 32;
}

void loop()
{
     
   blink13 = 32;  // replaces  * ( (volatile byte*) 0x25) = 32;
    
   delay(2000); // Wait for 1000 millisecond(s)
   
  blink13 = 0; // ( (volatile byte*) 0x25) = 0;

      delay(1000); // Wait for 1000 millisecond(s)
}

#define allows us to create blink13 - sorta like a variable



Bare Metal Programming - memory & Pointers
#define blink13    * ( (volatile byte*) 0x25)
#define blink13Set    * ( (volatile byte*) 0x24)

void setup()
{
  
blink13Set = 32; // replaces  DDRB = 32;
}

void loop()
{
     
   blink13 = 32;  // replaces  * ( (volatile byte*) 0x25) = 32;
    
   delay(2000); // Wait for 1000 millisecond(s)
   
  blink13 = 0; // ( (volatile byte*) 0x25) = 0;

      delay(1000); // Wait for 1000 millisecond(s)
}

We replace DDRB with blink13Set  assigning 0x24 DDRB memory location



Bare Metal Programming - BIT Masking
We have been using axee, time for a 
scalpel

0 0 1 0 0 0 0 0

Ok, Pin 13 is turned on, but the other pins are turned off!



Bare Metal Programming - Quick register reminder
Port B has an 8 Bit Register

PortB0  Digital Pin 8    

PortB1  Digital Pin 9

PortB2 Digital Pin 10

PortB3  Digital Pin 11

PortB4  Digital Pin 12

PortB5  Digital Pin 13  (LED_BUILTIN);

We cannot access PortB6 or PORTB

We want to turn on Pin13

Therefore all the ports are set to Zero except for PortB5 

00100000 binary

00320000 = 0+0+32+0+0+0+0

00100000 binary is the equivalent of 32 decimal

Port Bin Dec

B0 0 0

B1 0 0

B2 0 0

B3 0 0

B4 0 0

B5 1 32

B6 0 0

B7 0 0



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

0 0 1 0 0 0 0 0

Ok, Pin 13 is turned on, but the other pins are turned off!

This is not very efficient.  We just to turn on PB5 or Pin13



Bare Metal Programming - BIT Masking

We have been using axe, time for a scalpel

A B OR      | AND    & XOR    ^

False False False False False

False True True False True

True False True False True

True True True True False

First we need to get to the truth.  The above is a Logic Truth Table and Not Truth Table

A B

0 1

1 0

OR, AND, XOR -  TRUTH TABLES NOT ~ TRUTH TABLE



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

OR OPERATION - TURN ON A PIN

0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 0
OR

0 0 1 0 1 0 1 0

PORTB = PORTB|32 OR PORTB|=32 - turns on Pin 13 while leaving on Pin 9 and Pin 11 



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

AND OPERATION - TURN OFF A PIN

0 0 1 0 1 0 1 0

1 1 0 1 1 1 1 1
AND

0 0 0 0 1 0 1 0

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11 



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

AND OPERATION - TURN OFF A PIN

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11 

233 Really?  How am I am going to remember that?
   



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

AND OPERATION - TURN OFF A PIN

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11 

233 Really?  How am I am going to remember that?
   

Bit Shifting to the rescue!



Bare Metal Programming - BIT Masking
Bit Shifting

0 0 1 1 1 0 1 0

0 1 1 1 0 1 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 0 0 0

PORTB

PORTB <<1

PORTB <<2

PORTB <<3



Bare Metal Programming - BIT Masking
Bit Shifting

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

PORTB

PORTB <<1

PORTB <<2

PORTB <<3



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

Bit Banging - one bit on

0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 0
OR

0 0 1 0 1 0 1 0

 PORTB | = 32
PORTB |=(1<<5)

1<<5



Bare Metal Programming - BIT Masking
Bit Shifting

0 0 0 0 0 0 1 0

1 1 1 1 1 1 0 1

   1<<2

 ~(1<<2)



Bare Metal Programming - BIT Masking
Bit Shifting

1 0 1 0 1 0 1 0

1 1 0 1 1 1 1 0
AND

1 0 0 0 1 0 1 0

 PORTB &= 223
PORTB &=~(1<<5)

~(1<<5)



Bare Metal Programming - BIT Masking
We have been using axe, time for a scalpel

Bit Banging - one bit on

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 0

XORR

1 0 0 0 1 0 1 0

PORTB ^ (1<<5) or PORTB ^= (1<<5)
XOR one or other but not both

1 0 0 0 1 0 1 0

1 1 1 1 1 1 1 0

XORR

1 0 1 0 1 0 1 0



Bare Metal Programming - BIT Masking



Bare Metal Programming - Putting It All Together
l

#define blink13    * ( (volatile byte*) 0x25)
#define blink13Set    * ( (volatile byte*) 0x24)

void setup()
{
  
blink13Set  |=(1<<5)    // replaces 32 or B0010000 

 }

void loop()
{
     
   blink13  |= (1<<5);    // replaces 32 or B001000032;  // replaces  32    
   
   delay(2000); // Wait for 2000 millisecond(s)
   
   blink13   &= ~(1<<5); // 

    delay(500); // Wait for 500 millisecond(s)
}


