DARE METAL PROGRAMMING

BARE METAL PROGRAMMING

Why? Speed and Efficiency

BARE METAL PROGRAMMING

. .
The behaviour described above happens thanks to a special piece of code that is executed at every reset of the W h e n We m e n t -I O n e d A r d u -I n O

microcontroller and that looks for a sketch to be uploaded from the serial/USB port using a specific protocol and speed. . .
If no connection is detected, the execution is passed to the code of your sketch. B O O t -l_ O a d e r e a r -l_ -I e r -I n t h e

This little (usually 512 bytes) piece of code is called the “Bootloader” and it is in an area of the memory of the

microcontroller - at the end of the address space - that can’t be reprogrammed as a regular sketch and had been C -L a S S 9 We S p O k e a b O u t m e m O r y °

designed for such purpose.

Sroma oy P flemery o Specific memory blocks are

- = called registers

Application Flash Section

160 1/O Ext
Registers

SRAM
2048 x 8

Boot Flash Section

The Memory Map of an ATmega328P

Program Memory
16-bits

BARE METAL PROGRAMMING

Data Memory

8-bits

EEPROM
8-bits

Flash
16K x 16

Application Flash Section

Boot Flash Section

The Memory Map of an ATmega328P

32 General
Purpose

160 I/O Ext
Registers

SRAM
2048 x 8

Registers are memory blocks
containing essential data for
controlling or setting up
microcontrollers.

BARE METAL PROGRAMMING

Each port 1is controlled by
three registers, which are
also defined variables 1in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
B reint The PORT register controls
o whether the pin is HIGH or

LOW, and the PIN register

12 EEpE b
R LELLER

PORT C

IX

reads the state of INPUT pins
set to input with pinMode().

Registers are memory blocks containing essential
data for controlling or setting up microcontrollers.

PORT C

BARE METAL PROGRAMMING

0.0

E E b E
R LELLER

IX

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
The PORT register controls
whether the pin is HIGH or
LOW, and the PIN register
reads the state of INPUT pins
set to input with pinMode().

PORT C

BARE METAL PROGRAMMING

0.0

E E b E
R LELLER

IX

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
The PORT register controls
whether the pin is HIGH or
LOW, and the PIN register
reads the state of INPUT pins
set to input with pinMode().

Ok, but what is a register exactly?

BARE METAL PROGRAMMING

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
P Feinn The PORT register controls
o whether the pin is HIGH or

0.0

LOW, and the PIN register

12 EEpE b
R LELLER

PORT C

IX

reads the state of INPUT pins
set to input with pinMode().

Registers are memory blocks containing essential
data for controlling or setting up microcontrollers.

BARE METAL PROGRAMMING

void setup() {
// initialize the LED pin as an output:
pinMode(ledPin, OUTPUT); DDR Responsibility
// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT_PULLUP); DDR Responsibility

}

void loop() {
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);

// check 1if the pushbutton is pressed. If it is, the
buttonState is HIGH:
if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH);
} else {
// turn LED off:
digitalWrite(ledPin, LOW);
}

’ Look at our Arduino code to use

with a LED.

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
The PORT register controls
whether the pin is HIGH or
LOW, and the PIN register
reads the state of INPUT pins
set to input with pinMode().

a momentary switch

BARE METAL PROGRAMMING

void setup() {
// initialize the LED pin as an output:
pinMode(ledPin, OUTPUT);
// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT_PULLUP);
}

void loop() {
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);

// check if the pushbutton is pressed. If it is, the
buttonState is HIGH:
if (buttonState == HIGH) {
// turn LED on:
digitalWrite(ledPin, HIGH); Port Responsibility
} else {
// turn LED off:
digitalWrite(ledPin, LOW); Port Responsibility

3 Look at our Arduino code to use
with a LED.

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
The PORT register controls
whether the pin is HIGH or
LOW, and the PIN register
reads the state of INPUT pins
set to input with pinMode().

a momentary switch

BARE METAL PROGRAMMING

void setup() {
// initialize the LED pin as an output:
pinMode(ledPin, OUTPUT);
// initialize the pushbutton pin as an -input:
pinMode (buttonPin, INPUT_PULLUP);
}

void loop() {
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin); Pin Responsibility

// check if the pushbutton is pressed. If it is, the
buttonState is HIGH:
if (buttonState == HIGH) Pin Responsibility
{
// turn LED on: digitalWrite(ledPin, HIGH);
} else {
// turn LED off:
digitalWrite(ledPin, LOW);
}

} Look at our Arduino code to use

with a LED.

Each port is controlled by
three registers, which are
also defined variables in the
arduino language. The DDR
register, determines whether
the pin is an INPUT or OUTPUT.
The PORT register controls
whether the pin is HIGH or
LOW, and the PIN register
reads the state of INPUT pins
set to input with pinMode().

a momentary switch

BARE METAL PROGRAMMING

1 Byte = 8 Bits

ional License.

ShareAlike 4.0

S =

1 Bit
1 byte = 8 bits 53
1 kilobyte = 1024 bytes =
1 megabyte = 1024 kilobyte £$
1 gigabyte = 1024 megabyte &
1 terabyte = 1024 gigabyte R

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING

Representation of a Binary Number

MSB Binary Digit LSB
28 | 27 | 26 | 25 | 24 | 28 | 22 | 21 | 20
256 | 128 | 64 | 32 | 16 8 4 2 1

We saw above that in the decimal number system, the weight of each digit from right to
left increases by a factor of 10. In the binary number system, the weight of each digit
increases by a factor of 2 as shown. Then the first digit has a weight of 1 (2°), the second
digit has a weight of 2 (21), the third a weight of 4 (22), the fourth a weight of 8 (23) and

soon.

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING

So for example, converting a Binary to Decimal number would be:

Decimal Digit Value | 256|128 |64|32|16|8 |4 |2 | 1

Binary Digit Value 1|10]1(1|0f|0|1|0]1

By adding together ALL the decimal number values from right to left at the positions that
are represented by a “1” gives us: (256) +(64) +(32) + (4) + (1) = 3574 or three hundred

and fifty seven as a decimal number.

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING

Please note: The Arduino Port Registers are 8 bit.

50 = 0+0+32+16+0+02+0

The decimal equivalent of 00110010 1is 50

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING

Please note: The Arduino Port Registers are 8 bit.

Convert 00100010 to decimal

0 0 1 0 0 0 1

What is the decimal equivalent?

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING

Please note: The Arduino Port Registers are 8 bit.

Convert 00100010 to decimal

0 0 1 0 0 0 1

0 0 32 0 0 0 2

What is the decimal equivalent? 34 = 32 +2

We need a quick review of bits and bytes.

BARE METAL PROGRAMMING
Port Register
How to:

BARE METAL PROGRAMMING

Let’s return back to the
Arduino. PLease review
how we would program the
BuiltIn LED pin (13) to

blink using Arduino code.

1x]
[l

[c[AlD]

BARE METAL PROGRAMMING

Want to see it work? Please access
Circuit in TinkerCad. Select an
Arduino and review how to program
Pin 13 or the BuiltIn Pin See Llink

// C++ code

void setup()

{
pinMode (LED_BUILTIN, OUTPUT)};

}

void loop()

{
digitalWrite(LED_BUILTIN, HIGH);
delay(1000); // Wait for 1000 millisecond(s)
digitalWrite (LED_BUILTIN, LOW);

delay(1000); // Wait for 1000 millisecond(s)

https://www.tinkercad.com/things/6oC8Aje3D8O-example-1-bare-metal-standard-blink-pin-13/editel?sharecode=wXXFp5AVp8RH8DNYU8Z5LPzRpoVAIR02kte9niRn4QI

BARE METAL PROGRAMMING

Port B has an 8 Bit Register

o . Port | Bin Dec
PortB® Digital Pin 8
PortBl Digital Pin 9

. BO 0 |0
PortB2 D1igital Pin 10

B1 0 0

PortB3 Digital Pin 11

. . . B2 0 0
PortB4 Digital Pin 12
PortBI Digital Pin 13 (LED_BUILTIN); B3 0 0
We cannot access PortB6 or PORTB B4 10 0
We want to turn on Pinl13 . I .
Therefore all the ports are set to Zero except for PortB5 B6 0 0
00100000 binary B7 0 0

00320000 = 0+0+32+0+0+0+0

BARE METAL PROGRAMMING

Now use the decimal
equivalent to turn on BUILTIN
LED

HINT 32

Click here for solution

https://www.tinkercad.com/things/esnvfbGKun0-lesson-2-bare-metal-programming-blink-13-pin-port-b-decimal/editel?sharecode=AnYxAzOjyjZ7FtR7WA24t6brDVLLXdtc8_mKZ9XwDpk

BARE METAL PROGRAMMING

Now use turn on digital pin 9
using the PORT variable to
turn on a LED.

HINT: You will need a
breadboard, resistor and LED

Click here for solution

https://www.tinkercad.com/things/g82A8YFio7V-bare-metal-programming-blink-9-pin/editel?sharecode=gd4A6AgvXau8rD7Fit-hCiawLsNB5eN0bt80obydVIk

BARE METAL PROGRAMMING
DDR Register
How to:

BARE METAL PROGRAMMING

void setup()
{
//pinMode (LED_BUILTIN, OUTPUT);

DDRB = 32;// B010000O sets PB5 as OUTPUT PB5 1is 0010000
or 32

}

void loop()

P {

[c[AlD]

1x]
[l

PORTB=32; //0010000;
Click here for solution
delay(2000); // Wait for 1000 millisecond(s)
PORTB=0;

delay(1000); // Wait for 1000 millisecond(s)

https://www.tinkercad.com/things/guGhqWOJhlW-bare-metal-programming-blink-13-pin-setup-ddrb/editel?sharecode=QHkvdl4hqve58P3_wSxXHShe2Nyo8Qz52R7buxCapZI

BARE METAL PROGRAMMING

Now go ahead and change
the DDR register
variable to suit Pin 9

BARE METAL PROGRAMMING - MEMORY & POINTERS

14.4.2 PORTB - The Port B Data Register

Bit 7 6 5 4 3 2 1 0

J 0x05 (0x25) PORTB7 PORTB6 PORTB# PORTB4 PORTB3 PORTB2 PORTBI1 PORTBO PORTB
o Read/Write W W W W W W W W
Tnifial Value 0 0 0 0 0 0 0 0

14.4.3 DDRB - The Port B Data Direction Register

0x04(0x24) [DDB7 | DDB6 | DDBs | DDBI | DDB3 | DDB2 | DDBI | DDB0 | DDRB
. B LCinT Read/Write RW W RW RW RW W W RW

o 9 o Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

) : i = "D 14.4.4 PINB - The Port B Input Pins Address'’
o SRR (L] . (—] pialie NT20
e S =|| - Ig# : Bit 7 6 5 4 3 2 1 0
e : : ; - ”* - 0303 (0x23) @_PL\I_% [_PiNBs | PINBi | PBS | Pe: | POBI] PINB0] PINB
2 o L. . RX0 40 OO rcin Read/Write RW RW RW RW RW RW RW RW

Initial Value NA N/A NA NA NA NA NA NA

BARE METAL PROGRAMMING - MEMORY & POINTERS

14.4.2 PORTB - The Port B Data Register

Bit ¥ 6 5 4 3 2 1 0
J . ‘ 0x05 (0x25) I PORTB7 PORTB6 PORTB# PORTB4 PORTB3 2 PORTBI1 PORTBO I PORTB

Read/Write W W W RW RW W RW
Initial Value 0 0 0 0 0 0 0 0
14.4.3 DDRB - The Port B Data Direction Register
Bit 7 s 5 4 3 2 1 0
: BB PCINTA : ‘Oxw ©x2¢ [DDB7 | DDBs | DDBs | DDBY | DDB3 | DDB: | DDBI | DDB0] DDRB
2()| = R EEINT ReadWrite W W "W RW W W W "W
LR}
(D) PET" Initial Value 0 0 0 0 0 0 0 0
) ‘ = PO 14.4.4 PINB - The Port B Input Pins Address'
2 M L ! (=] NT20
e SHE 3----I§: " Bit 7 6 5 4 3 2 1 0
e - iy S peIN - ‘om ©0x23) I PINBT | PINBG | PINBS | PINBI | PINBS | PINBI | PINBL | PINBU | PINB
o - la : 2 o O poin AR Read/Write W W W W W W W W

Initial Value NA N/A NA NA NA NA NA NA

BARE METAL PROGRAMMING - MEMORY & POINTERS

14.4.2 PORTB - The Port B Data Register

So how do we - R S S S S ——
0x05 (0x25) PORTB7 PORTB6 PORTB# PORTB4 PORTB3 PORTB2 PORTB1 PORTBO PORTB

Read/Write RW W RW W RW RW RW RW

Wr-ite 32 to OX25 Tnitial Value 0 0 0 0 0 0 0 0
(PO RT B) ? 14.4.3 DDRB -The Port B Data DirectioT\ Register

Bit 6 5 4 3 2 1 0
-oxwmx:u [Tooe7 | Dbes | DDBs | DDBS | DDB3 | DDB: | DDBI | DDB0] DDRB
Read/Write RW W W RW RW RW W RW
Initial Value 0 0 0 0 0 0 0 0

14.4.4 PINB - The Port B Input Pins Address'

Bit 7 6 5 4 3 2 1 0
0x030x23) [PINBT]| PINB6 | PINB: | PINBI | PINBS | PINB: | PINBL | PINBO | PDNB
Read Write "W W W W W RW W RW

Initial Value NA NA NA NA NA NA NA NA

BARE METAL PROGRAMMING - MEMORY & POINTERS

14.4.2 PORTB - The Port B Data Register

So how do we - R S S S S ——
0x05 (0x25) PORTB7 PORTB6 PORTB# PORTB4 PORTB3 PORTB2 PORTB1 PORTBO PORTB

Read/Write RW W RW W RW RW RW RW

Wr-ite 32 to OX25 Tnitial Value 0 0 0 0 0 0 0 0
(PO RT B) ? 14.4.3 DDRB -The Port B Data DirectioT\ Register

Bit 6 5 4 3 2 1 0
-oxwmx:u [Tooe7 | Dbes | DDBs | DDBS | DDB3 | DDB: | DDBI | DDB0] DDRB
Read/Write RW W W RW RW RW W RW
Initial Value 0 0 0 0 0 0 0 0

We use pointers! _
14.4.4 PINB - The Port B Input Pins Address'

Bit 7 6 5 4 3 2 1 0
0x030x23) [PINBT]| PINB6 | PINB: | PINBI | PINBS | PINB: | PINBL | PINBO | PDNB
Read Write "W W W W W RW W RW

Initial Value NA NA NA NA NA NA NA NA

BARE METAL PROGRAMMING - MEMORY & POINTERS

14.4.2 PORTB - The Port B Data Register

So how do we . C e,

-0;05 (0x25) I PORTB7 I PORTB6 I PORTB# I PORTB4 I PORTB3 I PORTB2 I PORTBI1 | PORTB0 I PORTB

. Read/Write RW W W AW RW RW RW RW
write 32 to Ox25 I R
(PO RT B) ? 14.4.3 DDRB - The Port B Data Direction Register
[]

Bit s 5 4 3 2 1 0
-Oxwm:u [Tobe7 | DbBs | DDB: | DDB: | DDB: | DDB: | DDBI | DDBO | DDRE
Read Write R RW B BW RW R RW R
Initial Value 0 0 0 0 0 0 0 0

We use pointers!
14.4.4 PINB - The Port B Input Pins Address

Bit

7 6 5 4 3 2 1 0

A Pointer in the C 0x030x23) [PINBT | PINB6 | PINBS | PINBI | PINBS | PINB: | PINEL | PINBO PINB
. . ReadWrite RW W W RW RW RW RW W

-l_anguage is a variable Tnitial Value NA NA NA NA NA NA NA NA

that points to the
memory location of
another variable
memory address.

BARE METAL PROGRAMMING - MEMORY & POINTERS

Simple Example

int classicVariable = 16; // create a “classic integer variable
int* pointerToClassicVariable = &classicVariable; //create a pointer to “point” to classicVariable or reference the variable

* pointerToClassicVariable = 32; //dereference pointerToClassicVariable and assign 32 to classicVariable

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to 0x25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

void setup()

{
DDRB = 32;// B010000 sets PB5 as OUTPUT PBS is 0010000 or 32);

}
void loop()

{
volatile byte* pointerToRegisterB = 0x25;
*pointerToRegisterB = 32; //PORTB=32;// PORTB is from pinout 32 decimal
delay(2000); // Wait for 1000 millisecond(s)
*pointerToRegisterB = 0; //PORTB=0; /PORTB 0 decimal

delay(1000); // Wait for 1000 millisecond(s)
}

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

Wow, can we do this all on one line? I don’t type well

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

Well, yes we can
* ((volatile byte*) 0x25) = 32;

Ok, | guess if you say so.

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

We can so let me show you.

* ((volatile byte™) 0x25) = 32;

We assign the memory address 0x25 to a pointer

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

We can say so. Let me show you.

* ((volatile byte*) 0x25) = 32;

We dereference it with * and assign the 0x25 to 32

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

volatile byte* pointerToRegisterB = 0x25; // create a pointer variable called pointerToRegisterB which is pointed to Ox25;

* pointerToRegisterB = 32; //dereference pointerToRegisterB and assign 32 to memory location to Ox25

We can say so. Let me show you.

* ((volatile byte*) 0x25) = 32;

We dereference it with * and assign the 0x25 to 32

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?

void loop()
I* volatile byte* memoryPointer = (volatile byte*) 0x25;// we are assigning 0x25 memory to memoryPointer
*memoryPointer=32; */
* ((volatile byte*) 0x25) = 32; //replaces two lines of the above code
delay(2000); // Wait for 1000 millisecond(s)
((volatile byte) 0x25) = 0;
}delay(1 000); // Wait for 1000 millisecond(s)

BARE METAL PROGRAMMING - MEMORY & POINTERS

So how do we write 32 to Ox25 (PORTB)?
EIOid loop()

* ((volatile byte*) 0x25) = 32; //replaces two lines of the above code
delay(2000); // Wait for 1000 millisecond(s)
((volatile byte) 0x25) = 0;
delay(1000); // Wait for 1000 millisecond(s)

This is good. We can make it better by using the #define

BARE METAL PROGRAMMING - MEMORY & POINTERS

#define blink13 * ((volatile byte*) 0x25)
}/oid setup()

}DDRB =32,

}/oid loop()

blink13 = 32; // replaces * ((volatile byte*) 0x25) = 32;
delay(2000); // Wait for 1000 millisecond(s)
blink13 = 0; // ((volatile byte*) 0x25) = 0;

delay(1000); // Wait for 1000 millisecond(s)

#define allows us to create blinkl3 - sorta like a variable

BARE METAL PROGRAMMING - MEMORY & POINTERS

#define blink13 * ((volatile byte*) 0x25) ol -
#define blink13Set * ((volatile byte*) 0x24) 14.4.2 PORTB -The Port E

void setup() But 7

{ 0x05 (0x25) PORIB”

blink13Set = 32; // replaces DDRB = 32; ReadWite —

} Imitial Value 0

void loop()

{ 14.4.3 DDRB - The PortB |
blink13 = 32; // replaces * ((volatile byte*) 0x25) = 32; Bit 7
delay(2000); // Wait for 1000 millisecond(s) mp oxos0x2¢) [TDDBT

.) N ReadWnte RW
blink13 = 0; // ((volatile byte*) 0x25) = 0; Caoiva ;

delay(1000); // Wait for 1000 millisecond(s)
1444 PINB-The PortB Ir

We replace DDRB with blinkl3Set assigning 0x24 DDRB memory location

BARE METAL PROGRAMMING - BIT MASKING

We have been using axee, time for a

scalpel
0 0 1 0 0 0 0

Ok, Pin 13 1is turned on, but the other pins are turned off!

BARE METAL PROGRAMMING - QUICK REGISTER REMINDER

Port B has an 8 Bit Register

o . Port | Bin Dec
PortB® Digital Pin 8
PortBl Digital Pin 9

. BO 0 |0
PortB2 D1igital Pin 10

B1 0 0

PortB3 Digital Pin 11

. . . B2 0 0
PortB4 Digital Pin 12
PortBI Digital Pin 13 (LED_BUILTIN); B3 0 0
We cannot access PortB6 or PORTB B4 0 0
We want to turn on Pinl13 . I .
Therefore all the ports are set to Zero except for PortB5 B6 0 0
00100000 binary B7 0 0

00320000 = 0+0+32+0+0+0+0

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel

0 0 1 0 0 0 0 0

Ok, Pin 13 1is turned on, but the other pins are turned off!

This is not very efficient. We just to turn on PB5 or Pinl13

BARE METAL PROGRAMMING - BIT MASKING

First we need to get to the truth. The above 1is a Logic Truth Table and Not Truth Table

OR, AND, XOR - TRUTH TABLES NOT ~ TRUTH TABLE
A B OR | AND & @ XOR * A B
False False False False False 0 1
False True True False True
True False True False True 1 0
True True True True False

We have been using axe, time for a scalpel

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel
OR OPERATION - TURN ON A PIN

0 0 0 0 1 0 1 0
OR

0 0 1 0 0 0 0 0

0 0 1 0 1 0 1 0

PORTB = PORTB|32 OR PORTB|=32 - turns on Pin 13 while leaving on Pin 9 and Pin 11

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel
AND OPERATION - TURN OFF A PIN

AND

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel
AND OPERATION - TURN OFF A PIN

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11

233 Really? How am I am going to remember that?

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel
AND OPERATION - TURN OFF A PIN

PORTB = PORTB&223 OR PORTB&=233 - turns off Pin 13 while leaving on Pin 9 and Pin 11

233 Really? How am I am going to remember that?

Bit Shifting to the rescue!

BARE METAL PROGRAMMING - BIT MASKING

Bit Shifting

0 1 1 1 0 1 0 PORTB

1 1 1 ﬂ 1 0 0 PORTB <<
1 1 0 1 0 0 0 PORTB <<
1 0 1 0o | o 0 0 PORTB <<

o | O | O | O

BARE METAL PROGRAMMING - BIT MASKING

Bit Shifting

0 0 0 0 0 0 1 PORTB

0 0 0 0 ‘ 0 1 0 PORTB <<
0 0 0 0 1 0 0 PORTB <<
0 0 0 1| o 0 0 PORTB <<

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel

Bit Banging - one bit on

0 0 0 0 1 0 1 0
oR 0 0 1 0 0 0 0 0 1<<5
0 0 1 0 1 0 1 0
PORTB | = 32

PORTB |=(1<<5)

BARE METAL PROGRAMMING - BIT MASKING

Bit Shifting

BARE METAL PROGRAMMING - BIT MASKING

Bit Shifting
0 1 0 1 0 1
1 0 1 1 1 1
0 0 0 1 0 1

PORTB &= 223
PORTB &=~(1<<5)

BARE METAL PROGRAMMING - BIT MASKING

We have been using axe, time for a scalpel

Bit Banging - one bit on

1 0 1 0 1 0 1 0 0 0 1 0 1 0
1 1 1 1 1 0 1 1 1 1 1 1 1 0
XORR XORR

PORTB A (1<<5) or PORTB A= (1<<5)
XOR one or other but not both

BARE METAL PROGRAMMING - BIT MASKING

% Turn bits on and off

Commit this to memory. You will see it everywhere

Turn PB5 on: PORTB |= (1 << 5)
Turn PB5 off: PORTB &= ~ (1 << 5)
Toggle PBS: PORTB #=, (1 << 5)

BARE METAL PROGRAMMING - PUTTING IT ALL TOGETHER

1
#define blink13 * ((volatile byte*) 0x25)
#define blink13Set * ((volatile byte*) 0x24)

void setup()

blink13Set |=(1<<5) //replaces 32 or BO0O10000

}
%/oid loop()

blink13 |= (1<<5)3 //replaces 32 or BO01000032; // replaces 32
delay(2000); // Wait for 2000 millisecond(s)

blink13 &= ~(1<<5);//

delay(500); // Wait for 500 millisecond(s)

