
Newbie’s Guide to AVR Timers

Dean Camera

March 15, 2015

Text © Dean Camera, 2013. All rights reserved.

This document may be freely distributed without payment to the author, provided that it is not
sold, and the original author information is retained.

For more tutorials, project information, donation information and author contact information,
please visit www.fourwalledcubicle.com.

1

http://www.fourwalledcubicle.com

Contents

1 Introduction 3

2 Timers running at Fcpu 4

3 Prescaled Timers 8

4 Long Timer Delays in Firmware 11

5 The CTC Timer Mode 13

6 CTC Mode using Interrupts 16

7 Pure Hardware CTC 20

8 The Overflow Event 22

9 Overflow as CTC 26

2

Chapter 1

Introduction

The timer systems on the AVR series of Microcontrollers are complex beasts. They have a myriad
of uses ranging from simple delay intervals right up to complex Pulse Width Modulation (PWM)
signal generation. However, despite the surface complexity, the function of the timer subsystem
can be condensed into one obvious function: to measure time.

We use timers every day—the most simple one can be found on your wrist. A simple clock will
time the seconds, minutes and hours elapsed in a given day—or in the case of a twelve hour clock,
since the last half-day. AVR timers do a similar job, measuring a given time interval.

The AVR timers are very useful as they can run asynchronous to the main AVR core. This
is a fancy way of saying that the timers are separate circuits on the AVR chip which can run
independent of the main program, interacting via the control and count registers, and the timer
interrupts. Timers can be configured to produce outputs directly to pre-determined pins, reducing
the processing load on the AVR core.

One thing that trips those new to the AVR timer is the clock source. Like all digital systems, the
timer requires a clock in order to function. As each clock pulse increments the timer’s counter by
one, the timer measures intervals in periods of one on the input frequency:

Timer Resolution =
1

Input Frequency

This means the smallest amount of time the timer can measure is one period of the incoming clock
signal. For instance, if we supply a 100Hz signal to a timer, our period becomes:

Timer Resolution = 1
Input Frequency

= 1
100Hz

= .01s

For the above example, our period becomes .01 seconds, thus our timer will be able to measure
times that are a multiple of this duration. If we measure a delay to be 45 of our 100Hz timer
periods, then our total delay will be 45 times .01 seconds, or .45 seconds.

For this tutorial, I will assume the target to be an ATMEGA16, running at at 1MHz clock. This
is a nicely featured AVR containing certain timer functionality we’ll need later on. As modern
AVRs come running off their internal ≈ 1MHz RC oscillator by default, you can use this without
a problem (although do keep in mind the resultant timing measurements will be slightly incorrect
due to the RC frequency tolerance).

In the sections dealing with toggling a LED, it is assumed to be connected to PORTB, bit 0 of
your chosen AVR (pin 1 of DIP AVRMEGA16).

To start off, we will deal with basic timer functionality and move on from there.

3

Chapter 2

Timers running at Fcpu

We’ll start with a simple example. We’ll create a simple program to flash a LED at about 10Hz.
Simple, right? Making a LED blink at 10Hz requires us to both turn it on and off again, so we
need to perform a toggle of the LED’s output state every 1

20 th of a second.

First, let’s look at the pseudocode required to drive this example:

Set up LED hardware
Set up timer

WHILE forever
IF timer value IS EQUAL TO OR MORE THAN 1/20 sec THEN

Reset counter
Toggle LED

END IF
END WHILE

We’re just starting out, so we’ll use the polled method of determining the elapsed time - we’ll put
in an IF statement in our code to check the current timer value, and act on it once it reaches (or
exceeds) a certain value. Before we start on the timer stuff, let’s create the skeleton of our project:

#include <avr/io.h>

int main (void)
{

// TODO: Set up LED hardware

// TODO: Set up timer

for (;;)
{

// TODO: Check timer value , reset and toggle LED when count matches 1/20 of a second
}

}

Extremely simple. I’m going to assume you are familiar with the basics of setting up AVR ports
as well as bit manipulation (if you’re uncertain about the latter, refer to this excellent tutorial).
With that in mind, I’ll add in the LED-related code and add in the IF statement:

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

// TODO: Set up timer

for (;;)
{

// TODO: Check timer value in if statement , true when count matches 1/20 of a second
if ()
{

PORTB ^= (1 << 0); // Toggle the LED

4

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=37871

CHAPTER 2. TIMERS RUNNING AT FCPU 5

// TODO: Reset timer value
}

}
}

Now we need to start dealing with the timer. We want to do nothing more than start it at 1MHz,
then check its value later on to see how much time has elapsed. We need to deviate for a second
and learn a little about how the timer works in its most basic mode.

The AVR timer circuits come in two different widths, 8 and 16 bit. While the capabilities of
the two timer types differ, at the most basic level (simple counting), the only difference is the
maximum amount of time the timer can count to before overflowing and resetting back to zero.
Those familiar with C will know that an unsigned eight bit value can store a value from 0 to 28−1,
or 255, before running out of bits to use and becoming zero again. Similarly, an unsigned 16 bit
value may store a value from 0 to 216 − 1, or 65535 before doing the same.

As the name suggests, an 8 bit timer stores its value as an eight bit value in its count register, while
the 16 bit timer stores its current count value in a pair of eight bit registers. Each advancement
of the counter register for any AVR timer indicates that one timer period has elapsed.

Our project needs a fairly long delay, of 1
20 of a second. That’s quite short to us humans, but to a

microcontroller capable of millions of instructions per second it’s a long time indeed!

Our timer will be running at the same clock speed as the AVR core to start with, so we know that
the frequency is 1MHz. One Megahertz is 1

1000000 of a second, so for each clock of the timer only
one millionth of a second has elapsed! Our target is 1

20 of a second, so let’s calculate the number
of timer periods needed to reach this delay:

Target Timer Count = 1
Target Frequency/

1
Timer Clock Frequency − 1

= 1
20/

1
1000000 − 1

= .05
0.000001 − 1

= 50000 − 1

= 49999

The AVR timers will only update their count on each timer input clock tick, thus it takes one tick
to get from a count of zero to one, or from the timer’s maximum value back to zero. As a result,
we need to decrement the number of ticks in our calulation by one as shown in the above formula.

So running at 1MHz, our timer needs to count to 49999 before 1
20 th of a second has elapsed. That’s

a very large value - too large for an 8 bit value! We’ll need to use the 16 bit timer 1 instead.

Firstly, we need to start the timer at the top of our main routine, so that it will start counting.
To do this, we need to supply the timer with a clock; as soon as it is clocked it will begin counting
in parallel with the AVR’s CPU core (this is called synchronous operation). To supply a clock of
Fcpu to the timer 1 circuits we need to set the CS10 bit (which selects a Fcpu prescale of 1 - more
on that later) in the TCCR1B, the Timer 1 Control Register B.

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << CS10); // Set up timer

for (;;)
{

// TODO: Check timer value in if statement , true when count matches 1/20 of a second

CHAPTER 2. TIMERS RUNNING AT FCPU 6

if ()
{

PORTB ^= (1 << 0); // Toggle the LED

// TODO: Reset timer value
}

}
}

Now, with only one line of code, we’ve started the hardware timer 1 counting at 1MHz - the same
speed as our AVR. It will now happily continue counting independently of our AVR. However, at
the moment it isn’t very useful, we still need to do something with it!

We want to check the timer’s counter value to see if it reaches 1
20 of a second, or a value of 49999

at 1MHz as we previously calculated. The current timer value for timer 1 is available in the special
16-bit register, TCNT1. In actual fact, the value is in two 8-bit pair registers TCNT1H (for the high
byte) and TCNT1L (for the low byte), however the C library implementation we’re using helpfully
hides this fact from us.

Let’s now add in our check to our code - it’s as simple as testing the value of TCNT1 and comparing
against our wanted value, 49999. To prevent against missed compares (where the timer updates
twice between checks so our code never sees the correct value), we use the equal to or more than
operator, “>=”.

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << CS10); // Set up timer

for (;;)
{

// Check timer value in if statement , true when count matches 1/20 of a second
if (TCNT1 >= 49999)
{

PORTB ^= (1 << 0); // Toggle the LED

// TODO: Reset timer value
}

}
}

Great! We’ve only got one more line of code to write, to reset the timer value. We already know
the current value is accessed via the TCNT1 register for Timer 1, and since this is a read/write
register, we can just write the value 0 to it once our required value is reached to rest it.

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << CS10); // Set up timer

for (;;)
{

// Check timer value in if statement , true when count matches 1/20 of a second
if (TCNT1 >= 49999)
{

PORTB ^= (1 << 0); // Toggle the LED

TCNT1 = 0; // Reset timer value
}

}
}

CHAPTER 2. TIMERS RUNNING AT FCPU 7

And there we have it! We’ve just created a very basic program that will toggle our LED every
1
20 of a second at a 1MHz clock. Testing it out on physical hardware should show the LED being
dimmer than normal (due to it being pulsed quickly). Good eyesight might reveal the LED’s very
fast flickering.

Next, we’ll learn about the prescaler so we can try to slow things down a bit.

Chapter 3

Prescaled Timers

In chapter 2 of this tutorial we learned how to set up our 16-bit timer 1 for a 1
20 second delay.

This short (to us humans) delay is actually quite long to our AVR - 50,000 cycles in fact at 1MHz.
Notice that Timer 1 can only hold a value of 0-65535 - and we’ve almost reached that! What do
we do if we want a longer delay?

One of the easiest things we can do is to use the timer’s prescaler, to trade resolution for duration.
The timer prescaler is a piece of timer circuitry which allows us to divide up the incoming clock
signal by a power of 2, reducing the resolution (as we can only count in 2n cycle blocks) but giving
us a longer timer range.

Let’s try to prescale down our Fcpu clock so we can reduce the timer value and reduce our delay
down to a nice 1Hz. The Timer 1 prescaler on the ATMEGA16 has divide values of 1, 8, 64, 256
and 1024 - so let’s re-do our calculations and see if we can find an exact value.

Our calculations for our new timer value are exactly the same as before, except we now have a
new prescaler term. We’ll look at our minimum resolution for each first:

Timer Resolution = 1
Input Frequency/Prescale

= Prescale
Input Frequency

For a 1MHz clock, we can construct a table of resolutions using the available prescaler values and
a Fcpu of 1MHz.

Prescaler Value Resolution @ 1 MHz
1 1 µs
8 8 µs
64 64 µs
256 256 µs
1024 1024 µs

If you recall our equation for calculating the timer value for a particular delay in chapter 2 of this
tutorial, you’ll remember it is the following:

Target Timer Count =
1

Target Frequency
/

1

Timer Clock Frequency
− 1

However, as we’ve just altered the prescaler term, the latter half is now different. Substituting in
our new resolution equation from above we get:

Target Timer Count = (
1

Target Frequency
/

Prescale

Input Frequency
) − 1

8

CHAPTER 3. PRESCALED TIMERS 9

Or, rearranged:

Target Timer Count = (
Input Frequency

Prescale × Target Frequency
) − 1

Now, we want to see if there is a prescaler value which will give an exact delay of 1Hz. One Hertz is
equal to one cycle per second, so we want our compare value to be one second long, or 1000000uS.
Let’s divide that by each of our resolutions and put the results in a different table:

Prescaler Value Target Timer Count
1 999999
8 124999
64 15624
256 3905.25
1024 975.5625

The results are interesting. Of the available prescaler values, we can immediately discount 256
and 1024 - they do not evenly divide into our wanted delay period. They are of course usable, but
due to the rounding of the timer count value the resultant delay will be slightly over or under our
needed delay. That leaves us with three possible prescaler values that will suit our purposes; 1, 8
and 64.

Our next task is to remove the values that aren’t possible given our hardware constraints. On an
8-bit timer, that means discounting values of more than 28 − 1, or 255, as the value won’t fit into
the timer’s 8-bit count register. For our 16-bit timer, we have a larger range of 0 to 216 − 1, or
65535. Only one of our prescaler values satisfies this requirement — a prescale of 64 — as the other
two possibilities require a timer count value of more bits than our largest 16-bit timer is capable
of storing.

Let’s go back to our original timer program and modify it to compare against our new value of
15624, which we’ve found to be 1 second at a prescale of 64 and a Fcpu of 1MHz:

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

// TODO: Set up timer at Fcpu /64

for (;;)
{

// Check timer value in if statement , true when count matches 1 second
if (TCNT1 >= 15624)
{

PORTB ^= (1 << 0); // Toggle the LED

TCNT1 = 0; // Reset timer value
}

}
}

Note I’ve removed the timer setup line, as it is no longer valid. We want to set up our timer to
run at 1

Fcpu×64 now. To do this, we need to look at the datasheet of the ATMEGA16 to see which

bits need to be set in which control registers.

Checking indicates that we need to set both the CS10 and CS11 prescaler bits in TCCR1B, so let’s
add that to our program:

CHAPTER 3. PRESCALED TIMERS 10

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

// Check timer value in if statement , true when count matches 1 second
if (TCNT1 >= 15624)
{

PORTB ^= (1 << 0); // Toggle the LED

TCNT1 = 0; // Reset timer value
}

}
}

Compile it, and we’re done! Remember that our timer runs as soon as it gets a clock source, so
with the above configuration our program will now work and the LED will now flash. The LED
is toggled at a rate of 1Hz via our timer code, and two toggles are required for a full on-off cycle,
giving a flashing frequency of .5Hz.

Chapter 4

Long Timer Delays in Firmware

So far, we’ve learned how to use the timers in their most basic counting mode to delay a specified
duration. However, we’ve also discovered a limitation of the timers — their maximum duration
that their timer count registers can hold. We’ve managed to get a 1Hz delay out of a prescaled
16-bit timer with a prescale, but what if we want a delay of a minute? An hour? A week or year?

The answer is to create a sort of prescaler of our own in software. By making the hardware timer
count to a known delay — say the 1Hz we created earlier — we can increment a variable each time
that period is reached, and only act after the counter is reached a certain value. Let’s pseudocode
this so we can get a better understanding of what we want to do:

Set up LED hardware
Set up timer
Initialise counter to 0

WHILE forever
IF timer value IS EQUAL TO 1 sec THEN

Increment counter
Reset timer
IF counter value IS EQUAL TO 60 seconds THEN

Toggle LED
END IF

END IF
END WHILE

The above pseudocode will build on our last experiment - a timer with a one second count - to
produce a long delay of one minute (60 seconds). It’s very simple to implement - all we need extra
to our last example is an extra IF statement, and a few variable-related lines. First off, we’ll re-cap
with our complete code as it stands at the moment:

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

// Check timer value in if statement , true when count matches 1 second
if (TCNT1 >= 15624)
{

PORTB ^= (1 << 0); // Toggle the LED

TCNT1 = 0; // Reset timer value
}

}
}

We need some code to create and initialise a new counter variable to 0, then increment it when
the counter reaches one second as our pseudocode states. We also need to add in a test to see if
our new variable reaches the value of 60, indicating that one minute has elapsed.

11

CHAPTER 4. LONG TIMER DELAYS IN FIRMWARE 12

#include <avr/io.h>

int main (void)
{

// TODO: Initialise a new counter variable to zero

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

// Check timer value in if statement , true when count matches 1 second
if (TCNT1 >= 15625)
{

TCNT1 = 0; // Reset timer value
// TODO: Increment counter variable

// TODO: Check here to see if new counter variable has reached 60
if ()
{

// TODO: Reset counter variable

PORTB ^= (1 << 0); // Toggle the LED
}

}
}

}

Now that we have our new program’s structure, replacing the TODOs becomes very simple. We
want a target count of 60, which is well within the range of an 8-bit unsigned char variable, so
we’ll make our counter variable of type unsigned char to give us a range of up to 255 (28 − 1)
seconds. The rest of the code is fairly straightforward, so I’ll add it all in at once:

#include <avr/io.h>

int main (void)
{

unsigned char ElapsedSeconds = 0; // Make a new counter variable and initialise to zero

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

// Check timer value in if statement , true when count matches 1 second
if (TCNT1 >= 15624)
{

TCNT1 = 0; // Reset timer value
ElapsedSeconds ++;

if (ElapsedSeconds == 60) // Check if one minute has elapsed
{

ElapsedSeconds = 0; // Reset counter variable

PORTB ^= (1 << 0); // Toggle the LED
}

}
}

}

Compile and run, and the LED should toggle once per minute. By extending this technique, we
can produce delays of an arbitrary duration. One point of interest is to note that any timing errors
compound - so if the timer input frequency is 1.1MHz rather than 1.0MHz our one minute timer
will be sixty times that small error out in duration. For this reason it is important to ensure that
the timer’s clock is as accurate as possible, to reduce long-term errors as much as possible.

Chapter 5

The CTC Timer Mode

Up until now, we’ve been dealing with the timers in a very basic way - starting them counting,
then comparing in our main routine against a wanted value. This is rather inefficient - we waste
cycles checking the timer’s value every time the loop runs, and slightly inaccurate (as the timer
may pass our wanted compare value slightly while processing the loop). What if there was a better
way?

Well, there is. The AVR timers usually incorporate a special function mode called “Clear Timer on
Compare”, or CTC for short. The CTC operating mode does in hardware what we’ve previously
experimented in software; it compares in hardware the current timer value against the wanted
value, and when the wanted value is reached a flag in a status register is set and the timer’s value
reset.

This is extremely handy; because the comparing is done in hardware, all we have to worry about
is checking the flag to determine when to execute our LED toggling - much faster than comparing
bytes or (in the case of the 16-bit timer) several bytes.

CTC mode is very straightforward. Before we look into the implementation, let’s pseudocode what
we want to do.

Set up LED hardware
Set up timer in CTC mode
Set timer compare value to one second

WHILE forever
IF CTC flag IS EQUAL TO 1 THEN

Toggle LED
Clear CTC flag

END IF
END WHILE

Short and to the point. Note that the name of the mode is Clear Timer on Compare - the timer’s
value will automatically reset each time the compare value is reached, so we only need to clear
the flag when the delay is reached. This set-and-forget system is very handy, as once the timer is
configured and started we don’t need to do anything other than check and clear its status registers.

Now then, we’ll grab our previous example, modifying it to fit with our new pseudocode:

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

// TODO: Configure timer mode to CTC
// TODO: Set compare value for a compare rate of 1Hz

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

if () // TODO: Check CTC flag

13

CHAPTER 5. THE CTC TIMER MODE 14

{
PORTB ^= (1 << 0); // Toggle the LED

// TODO: Clear CTC flag
}

}
}

Now, we need to flesh out the skeleton code we have. First up we need to configure our timer for
CTC mode. As you might be able to guess, we want to configure our timer, thus the bits we want
will be located in the timer’s Control registers. The table to look for is the one titled “Waveform
Generation Mode Bit Description”, and is located in the timer control register descriptions for each
timer. This table indicates all the possible timer modes, the bits required to set the timer to use
those modes, and the conditions each mode reacts to.

You should note that our previous examples have ignored this table altogether, allowing it to use
its default value of all mode bits set to zero. Looking at the table we can see that this setup
corresponds to the “Normal” timer mode. We want to use the CTC mode of the timer, so let’s
look for a combination of control bits that will give us this mode.

Interestingly, it seems that two different combinations in Timer 1 of the ATMEGA16 will give us
the same CTC behaviour we desire. Looking to the right of the table, we can see that the TOP

value (that is, the maximum timer value for the mode, which corresponds to the compare value
in CTC mode) uses different registers for each. Both modes behave in the same manner for our
purposes and differ only by the register used to store the compare value, so we’ll go with the first.

The table says that for this mode, only bit WGM12 needs to be set. It also says that the register
used for the compare value is named OCR1A.

Looking at the timer control registers (TCCR1A and TCCR1B) you should notice that the WGM1x bits -
used to configure the timer’s mode - are spread out over both registers. This is a small pain as you
need to find out which bits are in which register, but once found setting up the timer becomes very
easy. In fact, as we only have one bit to set — WGM12 — our task is even easier. The ATMEGA16’s
datasheet says that WGM12 is located in the TCCR1B register, so we need to set that.

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode
// TODO: Set compare value for a compare rate of 1Hz

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

if () // TODO: Check CTC flag
{

PORTB ^= (1 << 0); // Toggle the LED

// TODO: Clear CTC flag
}

}
}

The second task for this experiment is to set the compare value - the value that will reset the timer
and set the CTC flag when reached by the timer. We know from the datasheet that the register
for this is OCR1A for the MEGA16 in the first CTC timer mode, so all we need is a compare value.
From our previous experiment we calculated that 1Hz at 1MHz with a prescaler of 64 needs a
compare value of 15624, so let’s go with that.

CHAPTER 5. THE CTC TIMER MODE 15

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode
OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

if () // TODO: Check CTC flag
{

PORTB ^= (1 << 0); // Toggle the LED

// TODO: Clear CTC flag
}

}
}

There, almost done already! Last thing we need is a way of checking to see if the compare has
occurred, and a way to clear the flag once its been set. The place to look for the compare flags is
in the timer’s Interrupt Flag register — an odd place it seems, but the reason will become clear
in the next section dealing with timer interrupts. The ATMEGA16’s Timer 1 interrupt flags are
located in the combined register TIFR, and the flag we are interested in is the “Output Compare A
Match” flag, OCF1A. Note the “A” on the end; Timer 1 on the ATMEGA16 has two CTC channels
(named channel A and channel B), which can work independently. We’re only using channel A for
this experiment.

Checking for a CTC event involves checking the OCF1A flag in this register. That’s easy - but what
about clearing it? The datasheet includes an interesting note on the subject:

...OCF1A can be cleared by writing a logic 1 to its bit location

Very strange indeed! In order to clear the CTC flag, we actually need to set it - even though it’s
already set. Due to some magic circuitry inside the AVR, writing a 1 to the flag when its set will
actually cause it to clear itself. This is an interesting behaviour, and is the same across all the
interrupt bits. There’s a good reason for the flags to be cleared this way, although it is a little
outside the scope of this tutorial.

Despite that, we can now add in our last lines of code to get a working example:

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode
OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

if (TIFR & (1 << OCF1A))
{

PORTB ^= (1 << 0); // Toggle the LED

TIFR = (1 << OCF1A); // clear the CTC flag (writing a logic one to the set flag
clears it)

}
}

}

And there we have it, a working .5Hz LED flasher using the CTC timer mode!

Chapter 6

CTC Mode using Interrupts

For all our previous experiments, we’ve been using a looped test in our main code to determine
when to execute the timer action code. That’s fine, but what if we want to shift the responsibility
of choosing when to execute the timer code to the AVR hardware instead? To do this, we need to
look at the timer interrupts.

Interrupts are events that when enabled, cause the AVR to execute a special routine (called an In-
terrupt Service Routine, or ISR for short) when the interrupt conditions are met. These interrupts
can happen at any time in the program’s execution when global interrupts are enabled. When an
enabled ISR’s condition is met, the main routine is paused while the ISR executes. Once the ISR
execution completes, the main routine is resumed until the next interrupt. This is useful for us,
as it means we can eliminate the need to keep checking the timer value and just respond to its
interrupt events instead.

The AVR timers can have several different Interrupts - typically Overflow, Compare and Capture.
Overflow occurs when the timer’s value rolls past its maximum and back to zero (for an 8 bit
timer, that’s when it counts past 11111111 in binary and resets back to 00000000). However, for
this section we’ll deal with the Compare interrupt, which occurs in CTC mode when the compare
value is reached.

Again, we’ll pseudocode this to start with:

Set up LED hardware
Set up timer in CTC mode
Enable CTC interrupt
Enable global interrupts
Set timer compare value to one second

WHILE forever
END WHILE

ISR Timer Compare
Toggle LED

END ISR

We can start off this by working with our skeleton main code, used in previous examples. I’ll skip
the details on the parts already discussed in previous sections.

#include <avr/io.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

// TODO: Enable CTC interrupt
// TODO: Enable global interrupts

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

16

CHAPTER 6. CTC MODE USING INTERRUPTS 17

for (;;)
{

}
}

// TODO: Add compare ISR here

Note how it’s a modified version of the non-interrupt driven CTC example covered in the last
section. All we need to do is tell the timer to run the compare ISR we define when it counts up to
our compare value, rather then us polling the compare match flag in our main routine loop.

We’ll start with creating the ISR first, as that’s quite simple. In AVR-GCC — specifically, the
avr-libc Standard C Library that comes with it — the header file for dealing with interrupts is
called (unsurprisingly) “interrupt.h” and is located in the avr subdirectory. We need to include
this at the top of our program underneath our include to the IO header file. The top of our code
should look like this:

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

...

This gives us access to the API for dealing with interrupts. We want to create an ISR for the
Timer 1 Compare Match event. The syntax for defining an ISR body in AVRGCC is:

ISR(VectorName_vect)
{

// Code to execute on ISR fire here
}

Where VectorName is the name of the ISR vector which our defined ISR handles. The place to go
to find this name is the “Interrupt” section of the datasheet, which lists the symbolic names for all
the ISR vectors that the chosen AVR supports. When writing the vector name into GCC, replace
all spaces with underscores, and append “ vect” to the end of the vector’s name.

Like in chapter 5 we are still dealing with Channel A Compare of Timer 1, so we want the vector
named “TIMER1 COMPA”. In GCC this is called “TIMER1 COMPA vect”, after performing the
transformations outlined in the last paragraph. Once the ISR is defined, we can go ahead and
write out it’s body, adding the LED toggling code.

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

// TODO: Enable CTC interrupt
// TODO: Enable global interrupts

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

}
}

CHAPTER 6. CTC MODE USING INTERRUPTS 18

ISR(TIMER1_COMPA_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

Notice how we don’t clear the CTC event flag like in chapter 5 — this is automatically cleared by
the AVR hardware once the ISR fires. Neat, isn’t it!

Running the code so far won’t yield any results. This is because although we have our ISR all
ready to handle the CTC event, we haven’t enabled it! We need to do two things; enable the
“TIMER1 COMPA” interrupt specifically, and turn on interrupt handling on our AVR.

The way to turn on our specific interrupt is to look into the second interrupt-related register for
our timer, TIMSK. This is the Timer Interrupt Mask register, which turns on and off ISRs to handle
specific timer events. Note that on the ATMEGA16 this single register contains the enable bits for
all the timer interrupts for all the available timers. We’re only interested in the Timer 1 Compare
A Match interrupt enable bit, which we can see listed as being called OCIE1A (Output Compare
Interrupt Enable, channel A).

By setting that bit we instruct the timer to execute our ISR upon compare match with our specified
compare value. Let’s put that line into our program’s code and see how it all looks.

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

TIMSK |= (1 << OCIE1A); // Enable CTC interrupt

// TODO: Enable global interrupts

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

}
}

ISR(TIMER1_COMPA_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

Only one more thing to do — enable global interrupts. The AVR microcontrollers have a single
control bit which turns on and off interrupt handling functionality. This is used in pieces of code
where interrupt handling is not desired, or to disable interrupts while an ISR is already being
executed. The latter is done automatically for us, so all we need to do is turn on the bit at the
start of our code, and our compare interrupt will start to work.

The command to do this is called sei() in the avr-libc library that ships with WinAVR, and
is named to correspond with the assembly instruction which does the same for AVRs (the SEI
instruction). That’s irrelevant however, as we just need to call the command in our code.

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

CHAPTER 6. CTC MODE USING INTERRUPTS 19

DDRB |= (1 << 0); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

TIMSK |= (1 << OCIE1A); // Enable CTC interrupt

sei(); // Enable global interrupts

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

}
}

ISR(TIMER1_COMPA_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

And our example is finished! Running this will give a nice .5Hz LED flasher using the timer’s
event interrupts. The nice thing is that the timer operation is now completely handled for us in
hardware — once set up, we just need to react to the events we’ve configured. Notice that our
main loop is now empty; if this is the case you may put sleep commands inside the main loop to
save power between compares.

Chapter 7

Pure Hardware CTC

You probably think by now that we’ve improved our example as much as possible — after all,
what more improvements are there to make? Well, it’s time to finish of the CTC topic by looking
at the hardware outputs.

All AVR’s pins have alternative hardware functions. These functions (currently non re-routable)
when activated interface the IO pins directly to the AVR’s internal hardware - for instance the
Tx/Rx alternative functions which are the direct interface to the AVR’s USART subsystem. Alter-
native pin functions can be very useful; as they can be internally connected straight to a hardware
subsystem, the maximum possible performance can be achieved.

In this section, we’ll be looking at the Compare Output settings of the AVR timer.

Looking at the timer 1 control registers, we can see a few pairs of bits we’ve previously ignored,
called (for timer 1) COM1A1/COM1A0 and COM1B1/COM1B0. Bonus points to anyone who’s linked the
“A” and “B” parts of the bit names to the timer compare channels — you’re spot on.

These bits allow us to control the hardware behaviour when a compare occurs. Instead of firing an
interrupt, the hardware can be configured to set, clear or toggle the OCxy (where “x” is the timer
number, “y” is the channel letter for timers with more than one channel) hardware pins when
a compare occurs. We can use the toggle function with our LED flasher, so that the hardware
toggles the LED’s state for us automatically, making it a true set-and-forget operation.

Before we do anything else, let’s work out which pins of our ATMEGA16 are linked to the Compare
Output hardware — we want the pins with alternative functions starting with “OC”. On our PDIP
package version, that maps to:

GPIO Pin Alternative Function
PB3 OC0
PD4 OC1B
PD5 OC1A

So timer 0 has one Compare Output channel, while timer 1 has two (channels A and B) as we’ve
already discovered. As always we’ll just deal with Channel A in our example.

Now we have a problem. All the previous chapters have assumed the LED is attached to PORTB,
bit 0 - but we’ll have to move it for this chapter. As stated above, the alternative pin functions
cannot be moved to another pin, so we must move Moses...I mean, our LED, to the pin with the
required alternative function.

Timer 1 Channel A’s Compare Output is located on PD5, so move the LED there for the rest of
this example. Now, let’s psudocode:

Set up LED hardware
Set up timer in CTC mode
Enable timer 1 Compare Output channel A in toggle mode
Set timer compare value to one second

20

CHAPTER 7. PURE HARDWARE CTC 21

WHILE forever
END WHILE

Amazing how simple it is, isn’t it! Well, we can already fill in almost all of this:

#include <avr/io.h>

int main (void)
{

DDRD |= (1 << 5); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

// TODO: Enable timer 1 Compare Output channel A in toggle mode

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

}
}

All we need is to configure the timer so that it’ll toggle our channel A output each time the timer
value is equal to our compare value. The datasheet has several descriptions for the functionality of
the COM1Ax and COM1Bx bits, so we need to find the table corresponding to the mode we’re using
the timer in.

A CTC mode isn’t listed explictly; instead the appropriate table is listed as “Compare Output
mode, Non PWM”. PWM stands for “Pulse Width Modulation”, and is a technique for producing
digital output signals that can be modified with external components to produce pseudo-analog
waveforms. For now, it is sufficient to know that the CTC mode is not a form of PWM and thus
the non-PWM bit description table is the one we’re looking for.

To make the channel A Compare Output pin toggle on each compare, the datasheet says we need
to set bit COM1A0 in TCCR1A. That’s our missing line, so let’s add it in!

#include <avr/io.h>

int main (void)
{

DDRD |= (1 << 5); // Set LED as output

TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

TCCR1A |= (1 << COM1A0); // Enable timer 1 Compare Output channel A in toggle mode

OCR1A = 15624; // Set CTC compare value to 1Hz at 1MHz AVR clock , with a prescaler of 64

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Start timer at Fcpu /64

for (;;)
{

}
}

Simple, isn’t it! We’ve now created the simplest (code-wise) LED flasher possible using pure
hardware functionality. Running this will cause the LED to flash at .5Hz, without any code other
than the timer initialization!

Chapter 8

The Overflow Event

Well, now that we’ve had fun creating a LED flasher via a variety of software and hardware CTC
methods, we’ll move on to one last LED flashing program. This time we’ll be using a different
Timer event to manage the toggling of the LED: the overflow.

As previously stated, timers store their values into internal 8 or 16 bit registers, depending on the
size of the timer being used. These registers can only store a finite number of values, resulting in
the need to manage the timer (via prescaling, software extension, etc) so that the interval to be
measured fits within the range of the chosen timer.

However, what has not been discussed yet is what happens when the range of the timer is exceeded.
Does the AVR explode? Does the application crash? Does the timer automatically stop?

The answer is simple, if rather boring. In the event of the timer register exceeding its capacity, it
will automatically roll around back to zero and keep counting. When this occurs, we say that the
timer has “overflowed”.

When an overflow occurs, a bit is set in one of the timer status registers to indicate to the main
application that the event has occurred. Just like with the CTC hardware, there is also a corre-
sponding bit which can enable an interrupt to be fired each time the timer resets back to zero.

So why would we need the overflow interrupt? Well, I leave that as an exercise to the reader.
However, we can demonstrate it here in this tutorial — via another LED flasher, of course!

Calculating the frequency of the flashing is a little different to our previous examples, as now we
have to calculate in reverse (to find the frequency from the timer count and timer resolution rather
than the timer count from a known frequency and timer resolution). We’ll still be working with
our 16-bit timer 1 for this example, to be consistent with previous chapters.

Let’s go back to our one of the timer equations we used back in chapter 3:

Target Timer Count = (
Input Frequency

Prescale × Target Frequency
) − 1

We want to determine the Target Frequency from the other two variables, so let’s rearrange:

(Target Timer Count + 1) × Prescale

Input Frequency
=

1

Target Frequency

And swap the left and right hand sides to get it into a conventional form:

1

Target Frequency
= (Target Timer Count + 1) × Prescale

Input Frequency

Since we know that for the overflow equation, the “Target Timer Count” becomes the maximum
value that can be held by the timer’s count register, plus one (as the overflow occurs after the

22

CHAPTER 8. THE OVERFLOW EVENT 23

count rolls over from the maximum back to zero). The formula for the maximum value that can
be held in a number of bits is:

Max Value = 2Bits − 1

But we want one more than that to get the number of timer counts until an overflow occurs:

Counts Until Overflow = 2Bits

Change “Max Value” to the more appropriate “Target Timer Count” in the first timer equation:

1

Target Frequency
= (Target Timer Count + 1) × Prescale

Input Frequency

And substitute in the formula for the counts until overflow to get the timer period equation. Since
frequency is just the inverse of period, we can also work out the frequencies of each duration as
well:

Target Period =
1

Target Frequency

Target Period = 2Bits × Prescale

Input Frequency

Which is a bit complex, but such is life. Now’s the fun part - we can now work out the overflow
frequencies and periods for our 16-bit Timer 1 running at different prescales of our AVR’s 1MHz
system clock:

Target Period = 216 × Prescale

Input Frequency

Prescaler Value Overflow Frequency Overflow Period
1 15.259 Hz 65.5 ms
8 1.907 Hz 0.524 s
64 .2384 Hz 4.195 s
256 .0596 Hz 16.78 s
1024 .0149 Hz 67.11 s

Note how our frequency decreases (and period increases) as our prescaler increases, as it should.
Because we have a reasonably slow main system clock, and a large timer count register, we end up
with frequencies that are easy to see with the naked eye (with the exception of the case where no
prescaler is used). Unlike the CTC method however, we are limited to the frequencies above and
cannot change them short of using a smaller timer, different prescaler or different system clock
speed — we lose the precision control that the CTC modes give us.

For this example, we’ll use a prescaler of 8, to give a 1.8Hz flashing frequency, and a period of
about half a second.

Almost time to get into the code implementation. But first, pseudocode! I’m going to extrapolate
on the preceding chapters and jump straight into the ISR-powered example, rather than begin
with a polled example. It works in the same manner as previous polled experiments, except for
the testing of the overflow bit rather than the CTC bit.

CHAPTER 8. THE OVERFLOW EVENT 24

Set up LED hardware
Set up timer overflow ISR
Start timer with a prescale of 8

WHILE forever
END WHILE

ISR Timer Overflow
Toggle LED

END ISR

Let’s get started. As always, we’ll begin with the skeleton program:

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

// TODO: Enable overflow interrupt
// TODO: Enable global interrupts

// TODO: Start timer at Fcpu/8

for (;;)
{

}
}

// TODO: Add overflow ISR here

Let’s begin with filling in the bits we can already do. The ISR code is easy; we can use the same
ISR as chapter 6, except we’ll be changing the compare vector to the overflow vector of timer 1.

Looking in the ATMEGA16 datasheet, the overflow interrupt for timer 1 is obvious — it’s listed
as “TIMER1 OVF” in the Interrupts chapter. Just like in chapter 6, we need to replace the spaces
in the vector name with underscores, and add the “ vect” suffix to the end.

We can also fill in the “Enable global interrupts” line, as that is identical to previous chapters and
is just the sei() command from the <avr/interrupt.h> header file.

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

// TODO: Enable overflow interrupt
sei(); // Enable global interrupts

// TODO: Start timer at Fcpu/8

for (;;)
{

}
}

ISR(TIMER1_OVF_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

Next, we need to figure out how to enable the overflow vector, so that our ISR is run each timer
the overflow occurs. The datasheet’s 16-bit Timer/Counter section comes to our rescue again,
indicating that it is the bit named TOIE1 located in the Timer 1 Interrupt Mask register, TIMSK:

CHAPTER 8. THE OVERFLOW EVENT 25

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TIMSK |= (1 << TOIE1); // Enable overflow interrupt
sei(); // Enable global interrupts

// TODO: Start timer at Fcpu/8

for (;;)
{

}
}

ISR(TIMER1_OVF_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

The last thing we need to do, is start the timer with a prescaler of 8. This should be easy for you
to do — if not, refer back to chapter 3.

The ATMEGA16 Datasheet, Timer 1 section tells us that for a timer running with a prescaler of
8, we need to start it with the bit CS11 set in the control register TCCR1B. Adding that to our code
finishes our simple program:

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TIMSK |= (1 << TOIE1); // Enable overflow interrupt
sei(); // Enable global interrupts

TCCR1B |= (1 << CS11); // Start timer at Fcpu/8

for (;;)
{

}
}

ISR(TIMER1_OVF_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
}

All done! This simple program will cause the LED to toggle each time the overflow occurs and
serves as a practical use of the overflow interrupt.

Chapter 9

Overflow as CTC

One neat application of the overflow event is for creating a CTC timer on AVRs which don’t
support true hardware CTC. It’s not as neat as the pure hardware CTC discussed in chapter 7,
but faster than the pure software CTC discussed in chapter 2.

CTC works by having a fixed BOTTOM value — that’s the timer’s minimum value — of zero, and
a variable TOP value, the value at which resets the timer and fires the event. However, with the
overflow event we seemingly have a fixed BOTTOM of again zero, and a fixed TOP of the maximum
timer’s value. Not so; using a small trick we can adjust the BOTTOM value to give us the equivalent
of a CTC implementation standing on its head.

This technique is called timer reloading. When configured, we preload the timer’s count register
(which is both readable and writeable) with a value above zero. This shortens the time interval
before the next overflow event, although only for a single overflow. We can get around that by
again reloading the timer’s value to our non-zero value inside the overflow event for a hybrid
software/hardware CTC.

Pseudocode time!

Set up LED hardware
Set up timer overflow ISR
Load timer count register with a precalculated value
Start timer with a prescale of 8

WHILE forever
END WHILE

ISR Timer Overflow
Toggle LED
Reload timer count register with same precalculated value

END ISR

Let’s examine the maths again. From chapter 3, we know that the formula for determining the
number of timer clock cycles needed for a given delay is:

Target Timer Count = (
Input Frequency

Prescale × Target Frequency
) − 1

Which works for a fixed BOTTOM of zero, and a variable TOP. We’ve got the “upside-down” imple-
mentation of a fixed TOP of 0 to 2Bits−1 and a variable BOTTOM. Our BOTTOM value becomes the TOP
minus the number of clock cycles needed for the equivelent CTC value, so the formula becomes:

Reload Timer Value = (2Bits − 1) − (
Input Frequency

Prescale × Target Frequency
)

Let’s go with the previous example in chapter 3: a .5Hz flasher, using a 1MHz clock and a prescale
of 64. We found the timer count to be 15625 for those conditions. Plugging it into the above
Reload Timer Value formula gives:

26

CHAPTER 9. OVERFLOW AS CTC 27

Reload Timer Value = (2Bits − 1) − 15625
= (216 − 1) − 15625
= 65535 − 15625
= 49910

So we need to preload and reload our overflow timer on each overflow with the value 49910 to get
our desired 1Hz delay. Since we’ve already gone over the code for an interrupt-driven overflow
example in chapter 8, we’ll build upon that.

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TIMSK |= (1 << TOIE1); // Enable overflow interrupt
sei(); // Enable global interrupts

// TODO: Preload timer with precalculated value

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

}
}

ISR(TIMER1_OVF_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
// TODO: Reload timer with precalculated value

}

Both the reloading and preloading of the timer takes identical code - we just need to set the timer’s
count register to the precalculated value. The timer’s current count value is available in the TCNTx

register, where x is the timer’s number. We’re using the 16-bit timer 1, so the count value is
located in TCNT1.

We’ll now finish of the example, replacing the unfinished segments:

#include <avr/io.h>
#include <avr/interrupt.h>

int main (void)
{

DDRB |= (1 << 0); // Set LED as output

TIMSK |= (1 << TOIE1); // Enable overflow interrupt
sei(); // Enable global interrupts

TCNT1 = 49910; // Preload timer with precalculated value

TCCR1B |= ((1 << CS10) | (1 << CS11)); // Set up timer at Fcpu /64

for (;;)
{

}
}

ISR(TIMER1_OVF_vect)
{

PORTB ^= (1 << 0); // Toggle the LED
TCNT1 = 49910; // Reload timer with precalculated value

}

And done! This is less preferable to the pure hardware CTC mode, as it requires a tiny bit more
work on both the programmer and the AVR to function. However, it will work just fine for AVRs
lacking the complete CTC timer functionality.

	Introduction
	Timers running at Fcpu
	Prescaled Timers
	Long Timer Delays in Firmware
	The CTC Timer Mode
	CTC Mode using Interrupts
	Pure Hardware CTC
	The Overflow Event
	Overflow as CTC

