
Week	 7:	 Embedded	 Programming	
	
11.3.	 2015	
	
This	 week	 we	 will	 learn	 about	 embedded	 programming.	
	
The	 agenda:	 	
http://academy.cba.mit.edu/classes/embedded_programming/index.html	 	
	
architectures Harvard, von Neumann RISC, CISC microprocessor, microcontroller
FPGA, CPLD ALA memory registers SRAM DRAM EEPROM FLASH fuse
peripherals A/D comparator D/A timer/counter/PWM USART USB ... word
size 8 16 32 64 families 8051 PIC MSP AVR ARM STM32 PSoC,
xCORE, Propeller vendors Octopart Digi-Key Mouser Newark Farnell SparkFun
AVR processors ATtiny10 ATtiny45V ATtiny44A ATmega328P ATmega16U2
ATxmega16E5 ATxmega16C4 tutorials data sheets packages DIP SOT SOIC
TSSOP TQFP LQFP MLF, CSP, BGA clocks RC (10%, 1% calibrated) ceramic
(0.5%) quartz (50 ppm) in-system development ISP (header, pads, clip) bootloader
JTAG, debugWire, PDI ICE programmers ISP AVRISP FabISP avrdude
JTAG, debugWIRE, PDI Atmel-ICE assembly language hex file instruction set,
opcodes mnemonics, directives, expressions avr-as gavrasm C GCC AVR Libc
modules types math avr-libc, binutils-avr, gcc-avr WinAVR CrossPack Atmel Studio
host communication RS232 bit timing VT100/ANSI/ISO/ECMA terminal Kermit
Minicom term.py USB software hardware FTDI cable libFTDI echo
hello-world hello.ftdi.44.cad board components traces interior programming
hello.ftdi.44.echo.c hello.ftdi.44.echo.c.make hello.ftdi.44.echo.interrupt.c
hello.ftdi.44.echo.interrupt.c.make hello.ftdi.44.echo.asm hello.ftdi.44.echo.asm.make
IDE Atmel Studio Eclipse AVR Firefly Scratch Modkit boards Arduino board +
C libraries + IDE + bootloader Fabkit Fabio hello.arduino.328P.cad board components
traces interior Blink.pde boards.txt programming hello.arduino.328P.blink.c
hello.arduino.328P.blink.make programming ATtiny PSoC Maple Tessel
BeagleBone PandaBoard Rasberry Pi Interpreters Python BASIC FORTH
AVRSH JavaScript debugging "printf" Atmel Studio gdb, ddd, Insight STM32
processor STM32F3 data sheet toolchain gcc-arm-none-eabi sudo add-apt-
repository ppa:terry.guo/gcc-arm-embedded OpenOCD
http://sourceforge.net/projects/openocd/files/latest/download?source=files QStlink2
sudo add-apt-repository ppa:mobyfab/qstlink2 stlink git clone
https://github.com/texane/stlink.git programmer ST-Link V2 software ST library
STMCube board STM32F3Discovery software blink.zip programming Nucleo
read a microcontroller data sheet program your board to do something, with as many
different programming languages and programming environments as possible
	
The	 assignment	 for	 this	 week::	

To read a microcontroller data sheet and program your board to do
something, with as many different programming languages and programming
environments as possible .
	
Reviews:	
	
	
Class:	
	
Writing code for microcontrollers. Make it do something is the
assignment.

Aiken computer at Harward: http://history-
computer.com/People/AikenBio.html
Memory and code were separate

RISC -

CISC –

Microcontrollers –

VPGAx & CPLDs: http://www.latticesemi.com/Products/FPGAandCPLD.aspx

ALA: http://cba.mit.edu/docs/papers/11.12.Computing.pdf

Memory:

EEPROM –

FLASH:

Fuse: store the configuration of the processor

Peripherals:

A/D
Comparator
D/A
Timer/counter/ PWM
USART
USB

Word size:

Many processors use bigger size than they need

Families:

8051 – stay away (legacy)
PIC: http://www.microchip.com/pagehandler/en-
us/products/picmicrocontrollers
MSP: low cost

AVR – we will be focusing on those, developed by students:
http://www.atmel.com/products/microcontrollers/avr/default.aspx
Now possible to write high level programmes and they function
sufficiently
ARM – if you need more than the AVR

STM32: http://www.st.com/web/en/catalog/mmc/FM141/SC1169
Interesting if you want to push performance

Vendors:

Annoying buying, out of phase with the economy. Lead time almost
always too long.

Octopart: search engine for parts.

Digikey: http://www.digikey.com/

Mouser

Newark

Farnell

SparkFun

AVR processors:

Different types

Tutorials: https://www.google.com/search?q=avr+tutorial

Data sheets:
http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

Reading the Data Sheet is essential to understand the hardware.

Packages:

DIP
SOT
SOIC
TSSOP
TQFP
LFTP
MLF, CSP, BGA

Clocks:

RC
Ceramic
Quartz (50 ppm)- crystals

Which one – how accurately you have to measure time.

Programmers:

Put að program into the processor

ISP
- AVRISP
- FabISP
- Avrdude

JTAG, debugWIRE, PDI
- Atmel-ICE

In-circuit emulator

Most of us will use ISP or... Atmel-ICE?

Assembly language:

Hex file – to be loaded into the processor
http://fab.cba.mit.edu/about/fab/hello/ftdi/hello.ftdi.44.echo.hex

instruction set:
http://academy.cba.mit.edu/classes/embedded_programming/doc0856.pdf

The higher level the the language, the further you are from it.

C:

Most of us will use C, a compiled language.
GCC, the GNU Compiler Collection: https://gcc.gnu.org/
If you are using Linux, install packages and you are set to go

Atmel Studio

If you use serial communication you have to set timing of the bits
correctly

Host communication:

V-USB:

FDTI cable – from digikey is 20 dollars, possible to find for 10
dollars.

Mosi – master out slave in

Sclock
Ground pin
Power pin
Reset

10k resistor to reset from the power supply
1Mhz capacitor
Crystal – for running with accuracy

IDE:

Boards:

The important thing about writing programmes is tha nobody writes it
from scratch – you modify it.
Start with a program that works, and make little changes

Main link – check

For this week – load the programme and make little changes to it.

Programming language:

Visual programming of controllers, look nice but you run into
problems if doing something complecated

Arduino: set of C libraries, integrated program environment and a
bootloader: http://www.arduino.cc/
Fabkit i/o: http://fab.cba.mit.edu/content/projects/fabkit/
Use the arduino workflow... you need to make it. 1-2 dollars.
http://makeyourbot.wikidot.com/fabio-1-1

high-low tech: http://highlowtech.org/?p=1695
AVR tutorial

Maple: http://leaflabs.com/devices/

Raspberry Pi: http://www.raspberrypi.org/

Debugging –

Atmel Studio can talk to ...

All of those can talk to the tool-chain.

AVRDUDE – is important. AVR Downloader/UploaDER

ST has been really agressive...

STM32F3Discovery: http://www.digikey.com/product-
detail/en/STM32F3DISCOVERY/497-13192-ND

Assignment:

Program your board and try to do it in as many ways as you can. Run
Atmel studio, try ... languages, to see what the environments are
like.

Make your own Arduino.
Send message to your board, let your board send meessages.

For Friday: prepare, areas i/o pins, guides, downloading arduino,
atmel studio, GCC – compiler

13.03.2015

Programming

Data sheet
Write a program for the boards so we can use the button to do
something

In the Datasheet:
Fig. 2.1 Block Diagram – overview of the microcontroller
Figure 2-1.
Block Diagram

Button – PB1 PB0
LED – PA7 8PCINT)

We want to listen to the button

We want to drive the LED – the pin will be output. 1 high or 5v

When the current flows we have got light.

You get information from the button, it talks to something and we get
output

When we press the button, send voltage to the LED light

If it is pressed than do something, if it is not pressed do nothing

If there is current then it can be measured

Pull-up resistor – is a kind of a controller (for the current not to
run wild). The microcontroller has a built-in pull-up resistor.
How we turn this on and off is down to the programming

Port
Pin
DDR (data direction register)

Port A is used if you want to output something – make it 1 or 0 and
turn it on and off

PIN – you can use to read from the port

DDR – determines if it is an input or output, 0 is in 1 is out

What the program needs to do – we have to make sure

Output on PA2
Input on PB2

When i start the program

DDRA (switch) – Set the PA2 to 1 (rafmagn á)

Write down where the LED and the BUTTON is

We write to get to 1 in the location we want, we write: 1≤≤PA2
= sendu straum til / um 7 bil PA2

Setup

Set PA2 to output
Enable the output to PB2
Set PB2 to input

Now we are set to run the main program

Loop

(We want to read our input – our PB2)

Read PB2

Then 2 options: on – off

When I press the button, I want the light to turn on, when I release
it I want to turn if off

Push button, latching button – we have got a push button

- on = LED off
- off – LED on

Then we tell the program to continue, continuously

Programming in Arduino

I followed a tutorial on high-low tech – Programming an Attiny w/
Arduino 1.6: http://highlowtech.org/?p=1695

I started by downloading the Arduino 1.6; ide-1.6x.zip, unzipping it
and locating the content of the attiny folder in a hardware folder
that I created in Documents/Arduino/hardware/

I restarted the Arduino development environment.

I did set Tools – Board – Attiny
Then I specified the Clock (and the Processor – Attiny (internal 20
MHz clock)

Then I connected the Attiny & ISP to the computer for power.

Starting to program in Arduino...

...by opening the Blink file (File-Example-01.Basics-Blink) and
changing the value of the digital pin

Reference online or off-line:
file:///Applications/Arduino.app/Contents/Resources/Java/reference/ar
duino.cc/en/Reference/HomePage.html

Uploading the sketch to the board – until uploaded.
If you then connect an LED between pin 0 and ground, you should see
it blink on and off. In my case the LED did not light up

Then select Tool - Burn Bootloader – Done burning bootloader.

Upload again.

File – examples – digital – button.

Change the value for buttonPin og ledPin:

const int buttonPin = 3; // the number of the pushbutton pin
const int ledPin = 7; // the number of the LED pin

To activate pull-up resistor in microcontroller add this to setup
(last line):
digitalWrite(buttonPin, HIGH);

Upload to send this to the microcontroller.
Then the button lights up continually.

We wanted to change the function of the button in such a way that if
the button was pressed once it would light the LED, if the button was
pressed twice the LED would not light.

This I did not manage to accomplish :-(

There is always another day...

