
Week	 13:	 Networking	 and	 Communications	
	
29.4.	 2015	
	
This	 week	 we	 will	 learn	 about	 networking	 and	 communications.	
	
The	 agenda:	 	
http://academy.cba.mit.edu/classes/networking_communications/index.html	 	
	

purposes
 location
 parallelism
 modularity
 interference

serial
 asynchronous
 RS-232: http://www.maximintegrated.com/en/app-
notes/index.mvp/id/723
RS-422: http://www.maximintegrated.com/en/app-notes/index.mvp/id/723
RS-485: http://www.maximintegrated.com/en/app-notes/index.mvp/id/723

 components video
 hello.bus.45.bridge.cad board traces interior
 hello.bus.45.node.cad board traces interior
 hello.bus.45.c makefile
 I2C, TWI: http://www.nxp.com/documents/user_manual/UM10204.pdf
 TWI master slave
 USI master slave
 software master slave
 library
 hello.I2C.45.bridge.cad board traces interior
 hello.I2C.45.node.cad board traces interior
 components programming
 SPI: http://www.atmel.com/images/doc2585.pdf
 library
 USB: http://www.usb.org/home
 Hardware: http://www.digikey.com/product-detail/en/ATMEGA16U2-
AU/ATMEGA16U2-AU-ND
 AVR LUFA
 STM32
 Software:
http://academy.cba.mit.edu/classes/embedded_programming/hello.ISP.44.
png
 V-USB: https://www.obdev.at/products/vusb/index.html

OSI layers: http://www.iso.org/iso/home.htm
 7: application (HTTP)
 6: presentation (SSL)
 5: session (RPC)
 4: transport (TCP, UDP)
 3: network (IP)
 2: data link (MAC)
 1: physical (PHY)

physical media:
http://www.cambridge.org/us/academic/subjects/physics/general-and-
classical-physics/physics-information-technology
 capacity

 bandwidth * log_2 (signal/noise)
 wired
 single-ended, differential, powerline
 open collector, open drain
 transmission (pass) gate, tri-state
 transmission line
 waveguide
 TIA RS232, 422, 485
 802.3 ethernet
 chip module
 SONET optical fiber
 wireless
 RF
 FCC Part 15 ISM
 802.11 Wi-Fi
 802.15 ZigBee
 6LoWPAN
 Bluetooth
 optical
 transmitter receiver
 acoustic

modulation: http://www.crcpress.com/product/isbn/9780849309670
 PCM: Pulse-Code Modulation
 PPM: Pulse-Position Modulation
 OOK: On-Off Keying
 FSK: Frequency-Shift Keying
 BPSK: Binary Phase-Shift Keying
 QAM: Quadrature Amplitude Modulation
 OFDM: Orthogonal Frequency-Division Multiplexing
 FHSS: Frequency-Hopping Spread Spectrum
 DSSS: Direct-Sequence Spread Spectrum
 UWB: Ultra-WideBand

channel sharing: http://authors.phptr.com/tanenbaumcn4/
 ALOHA
 Master-Slave
 Token Ring
 TDMA: Time-Division Multiple Access
 FDMA: Frequency-Divsion Multiple Access
 CSMA: Carrier-Sense Multiple Access -
 CD: Collision Detection -
 CA: Collision Avoidance -
 1-persistent: transmit when clear -
 nonpersistent: random backoff -
 p-persistent: probability to transmit -
 CDMA: Code-Division Multiple Access
 MIMO: Multiple-Input Multiple-Output
 "PDMA": Physical-Division Multiple Access

errors:
http://www.cambridge.org/us/academic/subjects/physics/general-and-
classical-physics/physics-information-technology
 detection, correction
 block, convolution codes
 parity, checksum, Hamming, Reed-Solomon, Turbo

networking: http://authors.phptr.com/tanenbaumcn4/
 Internet protocols: http://www.ietf.org/
 IPv4: http://www.ietf.org/rfc/rfc0791.txt
 IPv6: http://www.ietf.org/rfc/rfc2460.txt
 DNS: http://www.ietf.org/rfc/rfc1035.txt
 DHCP NAT private

 UDP, TCP
 HTTP: http://www.ietf.org/rfc/rfc2616.txt
 BGP: http://www.ietf.org/rfc/rfc4271.txt
 AODV ROLL
 sockets
 udpsnd.py udprcv.py
 udpsnd.c udprcv.c
 Wireshark: https://www.wireshark.org/ - Sniffer
 SLIP: http://www.ietf.org/rfc/rfc1055.txt
 Slattach:
http://manpages.ubuntu.com/manpages/trusty/en/man8/slattach.8.html
 route:
http://manpages.ubuntu.com/manpages/trusty/man8/route.8.html

hello.bus.45.SLIP.c makefile udp_slip.py video:
http://academy.cba.mit.edu/classes/networking_communications/SLIP/hel
lo.bus.45.SLIP.mp4
 Internet 0: http://cba.mit.edu/docs/papers/06.09.i0.pdf
 asynchronous packet automata (APA)
 source routing + network coordinates + back-pressure flow-
control + synchronous communication
 components video
 apa.ftdi.cad board traces interior apa.ftdi.c makefile
 apa.io.cad board traces interior apa.io.c makefile
 apa.c apa.h
 apa.py

RF
 Radios: http://www.arrl.org/shop/What-s-New
 oscillator, mixer, PA, LNA, IF, I/Q, demod, baseband, filters
 antennas: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
047166782X.html
 Q, antenna gain, impedance matching
 FabFi: https://code.google.com/p/fabfi/wiki/FabFi
 single-chip
 MICRF (300-470 MHz)
 Transmitter: http://www.digikey.com/product-
detail/en/MICRF102YM/576-1338-ND
 Receiver: http://www.digikey.com/product-
detail/en/MICRF008YM/576-1961-5-ND

Arecibo, Puerto Rico:
https://www.google.com/search?q=arecibo+puerto+rico&tbm=isch&imgil=a2
QvJ4usEQvf5M%253A%253BicEBUZRVdHppvM%253Bhttp%25253A%25252F%25252Fwww
.topuertorico.org%25252Fcity%25252Farecibo.shtml&source=iu&pf=m&fir=a
2QvJ4usEQvf5M%253A%252CicEBUZRVdHppvM%252C_&usg=__3TAkN7DBgnYe7ryYWRg
znGJQKUw%3D&biw=1334&bih=862&ved=0CDwQyjc&ei=X_pAVYDNIYTUasaSgLgF#img
rc=a2QvJ4usEQvf5M%253A%3BicEBUZRVdHppvM%3Bhttp%253A%252F%252Fwww.topu
ertorico.org%252Fimg%252Fhp-
tescop.jpg%3Bhttp%253A%252F%252Fwww.topuertorico.org%252Fcity%252Fare
cibo.shtml%3B400%3B300

http://en.wikipedia.org/wiki/Arecibo,_Puerto_Rico

 MRF49XA (433/868/915 MHz):
http://www.microchip.com/wwwproducts/Devices.aspx?product=MRF49XA
 chip board module

 nRF905 (433/868/915 MHz): http://www.digikey.com/product-
detail/en/NRF905/1490-1028-ND - https://github.com/zkemble/nRF905

	 chip module library
 nRF24L01+ (2.4 GHz ISM): http://www.digikey.com/product-
detail/en/NRF905/1490-1028-ND

 chip module library
 ESP8266 (2.4 GHz Wi-Fi)
 chip module commands library
 HC-05 (2.4 GHz Bluetooth): http://www.amazon.com/JBtek-
Wireless-Bluetooth-Transceiver-Arduino/dp/B00L083QAC
 chip module library : https://github.com/jdunmire/HC05
 software radio: http://gnuradio.org/redmine/projects/gnuradio/wiki

Very active user community around this chip.

Assignment

To design and build a wired &/or wireless network connecting at least
two processors.

Use light and sound to communicate.

Discussion on project and how to use the networking assignment to
develop the final project:

3 outputs – 3 flowers

Write a use case
Ignore the sensor on the output board – and make the input board a
master. Create another output board (or 2) and connect output boards
with a cable and multiple connectors.

Multiple inputs (3) – mixing 3 tones, melody, changing rythm or speed

How are they going to communicate and what are the messages going to
be.
Write a script for the communication.

Programming lesson:

Reset = 0

J2 FTDI =
IC1 t44 = Microcontroller
C1 1uf=Capacitor
R1 10k=Resistor
XTAL1 20 MHz = Crystal = time, is there because of the
microcontroller and the tasks that it has to perform

This was the first board we made.

Arduino environment

Baud = how many bits per second

9600 command rate with Neil

Comment in the code

Open code in “Text edit”

Parameters tell function what to do – we need to give it the value

All the pins have got 3 registers:
Get char function is a general function
With the parameters we tell which pins we want to talk to
Where to look and where to put it
Serial_pin
Serial_pin_in
Serial_pin_out

When using Neil’s code you have to use “make” etc
Using Arduio is simpler and it has a good reference

Get char – receives a character
Put char – sends one character

Put string – sends many characters

Variable – is like a container, with a name. Stores information

Declaration of the variable you need are written before the setup (in
Arduino)
Labelling of the containers is done before setup

Programming in Arduino: http://highlowtech.org/?p=1695

Tiny AVR Programmer Hookup Guide:
https://learn.sparkfun.com/tutorials/tiny-avr-programmer-hookup-guide

Microcontroller 1 (input board):

Attiny 45

Connector

Microcontroller 2 – (output board):

Attiny 45

Connector

int addup (int a, int b) [return a+b]

index=0

While = loop

See Learning – Reference in Arduino to clarify terms and functions

Parenthesis – ()
Curly braces – {}

While (1) – reads as true, keeps running

Buffer = array
Buffer[index] = char
Index = index + 1

Using Neil’s code in Arduino:

Serial is a library that is included by default in Arduino
This is using the internal library

Standard library = SoftwareSerial

Reference – Libraries, for information

Start with the library and the library gives you a set of functions
It needs a setup

SoftwareSerial mySerial (10, 11) (Those are arduino serial, we need
to match this with
SoftwareSerial mySerial (1, 0)

Tx – receive
Rx – transmit

Test: sketch_serial_Test

Sketch – and set Board

Burn bootloader

http://www.arduino.cc/en/Reference/Libraries

Copy from Example:

#include <SoftwareSerial.h>

SoftwareSerial mySerial(10, 11); // RX, TX
into parameter section

Copy: mySerial.begin(4800); into void setup

Change figure to 9600 (speed of talking)

Copy: if (mySerial.available())
 mySerial.write(mySerial.read());
and paste into void loop

Start Serial Monitor
Set 9600 baud

Type a letter in send line – one letter will pop up in the window
below, but if a string of letters is typed only the first letter will
appear

Now the following code is entered:

 if (mySerial.available()) {
 char chr = mySerial.read ();
 if (chr == ID) {
 mySerial.write(chr);
 }
}

}

Then this code is compiled and uploaded.

When finished the total sketch looks like this:

#include <SoftwareSerial.h>

SoftwareSerial mySerial(0, 1); // RX, TX

char ID='1';

void setup() {
 // put your setup code here, to run once:
mySerial.begin(9600);

}

void loop() {
 // put your main code here, to run repeatedly:

 if (mySerial.available()) {
 char chr = mySerial.read ();
 if (chr == ID) {
 mySerial.write(chr);
 }

}

}

when hitting Serial Monitor now only the number 1 should be returned
in the lower window

Going back to output board – networking:

digitalWrite(1, HIGH);
delayMicroseconds(500); // Approximately 10% duty cycle @ 1KHz
digitalWrite(1, LOW);
delayMicroseconds(500);

0.001 = 1 kHz
0.0001 = 10 kHz

4th May 2015

The intended networking activity is to have my output board reading
light 1 and light 2.

The reading of those boards should return a value, that the output
board can deliver as a sound output. It should be able to send a
message to light 1, ignoring light 2 and vice a versa.

The microcontroller – pins:

Serial test:

#include <SoftwareSerial.h>

SoftwareSerial mySerial(0, 1); // RX, TX

char ID='1';

void setup() {
 // put your setup code here, to run once:
mySerial.begin(9600);

}

void loop() {
 // put your main code here, to run repeatedly:

 if (mySerial.available()) {
 char chr = mySerial.read ();
 if (chr == ID) {
 mySerial.write(chr);
 }
}

}

char ID=’1’ is a unique identifier – that identifies the relevant
input board

Script for the reader of light (input1):

1. when you name is called read the light meter
2. then tell the reading

if (mySerial.available()) { - have I heard something

char chr = mySerial.read (); - I have heard something and write it
down

if (chr == ID) { - checking if the content of read is meant for him.
If this is true the actor will do everything contained within the
curly braces

val = analogRead(analogPin); // read the input pin

mySerial.println(val); // debug value – returning the message

Hook-up wires are connected to the input board – pin1 to TX. Nothing
happens.

A line of code was taken out: pinMode(1, OUTPUT);

Opening the serial monitor – entering the number 1, returned a
reading of the light.

Now the code looks like this: #include <SoftwareSerial.h>
SoftwareSerial mySerial(1, 2); // RX, TX

int analogPin = 3; // potentiometer wiper (middle terminal)
connected to analog pin 3

 // outside leads to ground and +5V

int val = 0; // variable to store the value read

char ID='2'; // variable to identify the relevant input
board

int digitalPin = 1; // potentiometer wiper (middle terminal)
connected to analog pin 3

void setup() {

 // set the data rate for the SoftwareSerial port

 mySerial.begin(4800);

}

void loop() // run over and over
{

 if (mySerial.available()) {
 char chr = mySerial.read ();
 if (chr == ID) {

 val = analogRead(analogPin); // read the input pin
 mySerial.println(val); // debug value

 }
 }
}

Connecting another input board did not return any reading, when char
ID=’22

Script for output board – what should it do?

1. Call input1
2. Ask for reading from input1
3. Receive reading from input1
4. Respond to the intensity of light, by decreasing or increasing

sound tone

SoftwareSerial mySerial(0, 2); // RX, TX – on input1

SoftwareSerial mySerial(2, 0); // RX, TX – on output/Master

void beep() {
 // Sound beep delay
 for (int i=0; i <= 200; i++){
 digitalWrite(1, HIGH);
 delayMicroseconds(500); // Approximately 10% duty cycle @ 1KHz
 digitalWrite(1, LOW);
 delayMicroseconds(500);
 }

 }

void lowbeep() {
 // Sound beep delay
 for (int i=0; i <= 100; i++){
 digitalWrite(1, HIGH);
 delayMicroseconds(1000); // Approximately 10% duty cycle @ 1KHz
 digitalWrite(1, LOW);
 delayMicroseconds(1000);
 }

 }

1. instead of making beep fixed, at 1 Khz – changed it to be
flexible (500+i)

2. interval between tone steps, going from interval of 1 to
interval of 10

Pausing between tones

Frequency and duration can now be controlled and changed

For connecting the two boards – adding: mySerial.write('1');
This will request response from the input1

avrdude: initialization failed, rc=-1
 Double check connections and try again, or use -F to
override
 this check.

for (int i=0; i <= 200; i=i+10)

int – i=0; starts at 0 – we are going to do this as long as the i is
smaller or equal to 200; how fast are we going to go.

The program was uploaded to both boards – input and output
On the output board – hit Serial Monitor to see if reading is taking
place. It did.

To work with the reading of values the intervals of reading need to
be defined and the speaker asked to play a certain tone, if the
reading is below or beyond a certain value.

Neils code is used for the application, but sketch-networking 1 and 2
are used for networking.

Application and programming week – used Neil’s code

Networking business:

Difference between ‘1’ and 1 – for testing
‘1’ is represented by an number in the Ascii table = 49.
http://www.asciitable.com/
The ID that we gave the board is 49

The output board will call ID 49 and ask it to send light data.
When the microcontroller send 49 it expects to receive a light value.
The light value has a value – between 0 and 1023. It can receive
those values.

The communication is limited, can only send one byte at a time.
We can only put so much info in one byte. 0-254 is the maximum value
that one byte can contain. We need to split the info into packages
that it can send.

Byte is made up of 8 bits. Each bit is either 1 or a 0. Lowest bit
is 1 and 128 is highest. 1 – 2 – 4 – 8 – 16 - 32 ... 128

Sending 2 bytes. 3 + 255. Reconstructing... shift 3 over, 3 is first
sent, the byte with the highest value is sent first. 100+30+3... is
the sum of 133. 3x256 + 255.

This is a protocol, rules of how we are going to communicate.

When the output board sends 49 he input board will respond with 2
numbers, the higher value first and then the lower value.

Implementation:

First – input board:

Sending 536, first sending 5 the hundreds, dividing by 100.
We have a variable, that may or may not contain a number that is
bigger than we can send in one go.

Dividing 0-1023, by 256 (8 division by 2)
An easy way to write it, by shifting. Take the whole register and
shift it 8 places to the left.

Code:
 mySerial.write((val>>8)&&255); // debug value (for
sending
 mySerial.write(val&&255); // debug value

Sending part is now complete. Will send the high value and the low
value of what it reads.

In output board:

Reconstruct the value
And make it do something – like playing two different or more tones

22.5.2015

Downloaded and added SoftwareSerialWithHalfDuplex library (remember
to remove –master ending before adding the library)

Input:

In input and output networking files added:

#include <SoftwareSerialWithHalfDuplex.h>
//input

 SoftwareSerialWithHalfDuplex mySerial(0, 2, false, false); // RX,
TX

Output: #include <SoftwareSerialWithHalfDuplex.h>
//output

 SoftwareSerialWithHalfDuplex mySerial(2, 0, false, false); // RX,
TX

HIGH – LOW values

If the light is below 512 we do one thing, if it is above we do
another thing

while (mySerial.available()<2); = wait until you have 2 packages

int highval = mySerial.read();
int lowval = mySerial.read(); = now we have unpacked the packages

val=lowval+(highval<<8); = re-stores the values

take out:
 for (int i=0; i <= 200; i=i+10){
 beep(500+i,200);

Added:

if (val<512){
 beep(1000,250);}
 else {
 beep(500,500);}

