
Programming an ATtiny with
Arduino ISP

OfficineArduinoTO
25/06/2014

1. Introduction
2. ATtiny45/85 vs. an Arduino Board
3. Materials and Tools
4. Installing ATtiny support in Arduino
5. Connecting the ATtiny
6. Programming the ATtiny
7. Configuring the ATtiny to run at 8 MHz (for SoftwareSerial support)
8. ATtiny Microcontroller Pin-Outs
9. Reference

1. Introduction

This tutorial shows you how to program with the new Arduino ISP an ATtiny45,
ATtiny85, ATtiny44 or ATtiny84 microcontroller using the Arduino software. These
are small, cheap ($2-3) microcontrollers that are convenient for running simple
programs. The ATtiny45 and ATtiny85 have eight legs and are almost identical, except
that the ATtiny85 has twice the memory of the ATtiny45 and can therefore hold more
complex programs. The ATtiny44 and ATtiny84 have 14-legs and more inputs and
outputs. Thanks to Mark Sproul for his work on making the Arduino core portable across processors.

2. ATtiny45/85 vs. an Arduino Board

Programming an ATtiny with
Arduino ISP

OfficineArduinoTO
25/06/2014

Programming an ATtiny with
Arduino ISP

OfficineArduinoTO
25/06/2014

1. Introduction

2. ATtiny45/85 vs. an Arduino Board

http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/profile/OfficineArduinoTO
http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/profile/OfficineArduinoTO
http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/lesson/qX1117g/Programming_an_ATtiny_with_Arduino_ISP
http://scuola.arduino.cc/profile/OfficineArduinoTO

The ATtiny45 or 85 is a great option for running simple Arduino programs: it’s small,
cheap and relatively easy to use. It does, however, have some limitations relative to
the ATmega328P on an Arduino Uno. There are fewer pins, meaning you can’t
connect as many components. There’s less flash memory (4KB or 8KB instead of
32KB), meaning your programs can’t be as big. There’s less RAM (256 or 512 bytes
instead of 2KB), meaning you can’t store as much data. And there’s no hardware
serial port or I2C port (Wire library), making communication trickier. (There are
workarounds, like the SoftwareSerial library or the TinyWire library, but they’re not
as robust and flexible.)

In short, then, if your project requires only a few simple inputs and/or outputs, you’re
probably fine using an ATtiny. If you’re trying to hook up more components or do
more complex communication or data processing, though, you’re probably better off
with something like the ATmega328P on an Arduino Uno. If you want something
smaller and cheaper than a full Arduino board, you might try using an ATmega328P
on a breadboard instead.

3. Materials and Tools

For this tutorial, you’ll need:

An in-system programmer (ISP), a piece of hardware used to load programs onto
the ATtiny. Options include:

the new Arduino ISP,
a Arduino Uno or Duemilanove (w/ an ATmega328, not an older board with
an ATmega168). See this tutorial for using an Arduino board as a
programmer
Another commercial programmer

ATtiny45 or ATtiny85 (8-pin DIP package) or an ATtiny44 or ATtiny84.
a solderless breadboard and jumper wires

4. Installing ATtiny support in Arduino

If you haven’t already, download the Arduino software, version 1.0.5 (1.0.4, 1.0.3
and 1.0.1 should work too, but not 1.0.2). Install the Arduino software, following
the instructions for Windows, for Mac OS X or for Linux.
Download the ATiny support for Arduino IDE
Unzip the attiny master.zip file. It should contain an “attiny-master” folder that
contains an “attiny” folder.
Locate your Arduino sketchbook folder (you can find its location in the
preferences dialog in the Arduino software)
Create a new sub-folder called “hardware” in the sketchbook folder, if it doesn’t

3. Materials and Tools

4. Installing ATtiny support in Arduino

http://arduino.cc/en/Tutorial/ArduinoToBreadboard
http://arduino.cc/en/Tutorial/ArduinoToBreadboard
http://arduino.cc/en/Tutorial/ArduinoISP
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
https://github.com/damellis/attiny/archive/master.zip

exist already.
Copy the “attiny” folder (not the attiny-master folder) from the unzipped ATtiny
master.zip to the “hardware” folder. You should end up with folder structure like >
Arduino > hardware > attiny that contains the file boards.txt and another folder
called variants.
Restart the Arduino development environment.
You should see ATtiny entries in the Tools > Board menu.

5. Connecting the ATtiny

You’ll need to provide power to the ATtiny and connect it to your programmer. That
is, connecting MISO, MOSI, SCK, RESET, VCC, and GND of the programmer to the
corresponding pins on the ATtiny.

6. Programming the ATtiny

Next, we can use the Arduino ISP to upload a program to the ATtiny:

Open the Blink sketch from the examples menu.
Change the pin numbers from 13 to 0.
Select the appropriate item from the Tools > Board menu (leave the serial port set
to that of your Arduino ISP).
Select Arduino ISP from the Tools

5. Connecting the ATtiny

6. Programming the ATtiny

Upload the sketch.

You should see “Done uploading.” in the Arduino software and no error messages. If
you then connect an LED between pin 0 and ground, you should see it blink on and
off. Note that you may need to disconnect the LED before uploading a new program.

7. Configuring the ATtiny to run at 8 MHz (for
SoftwareSerial support)

By default, the ATtiny’s run at 1 MHz (the setting used by the unmodified “ATtiny45″,
etc. board menu items). You need to do an extra step to configure the microcontroller
to run at 8 MHz – necessary for use of the SoftwareSerial library. Once you have the
microcontroller connected, select the appropriate item from the Boards menu (e.g.
“ATtiny45 (8 MHz)”). Then, run the “Burn Bootloader” command from the Tools
menu. This configures the fuse bits of the microcontroller so it runs at 8 MHz. Note
that the fuse bits keep their value until you explicitly change them, so you’ll only need
to do this step once for each microcontroller. (Note this doesn’t actually burn a
bootloader onto the board; you’ll still need to upload new programs using an external
programmer).

8. ATtiny Microcontroller Pin-Outs

ATtiny 44/84 and 45/85 pin-outs

7. Configuring the ATtiny to run at 8 MHz (for
SoftwareSerial support)

8. ATtiny Microcontroller Pin-Outs

9. Reference

The following Arduino commands should be supported:

pinMode()
digitalWrite()
digitalRead()
analogRead()
analogWrite()
shiftOut()
pulseIn()
millis()
micros()
delay()
delayMicroseconds()
SoftwareSerial (has been updated in Arduino 1.0)

This tutorial originally written by David Mellis: http://highlowtech.org/?p=1695

9. Reference

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PulseIn
http://arduino.cc/en/Reference/PulseIn
http://arduino.cc/en/Reference/Micros
http://arduino.cc/en/Reference/Delay
http://arduino.cc/en/Reference/DelayMicroseconds
http://arduino.cc/en/Reference/SoftwareSerial

