Input Device

FabAcademy 2015

Assignment

- Design a board
- Add a sensor
- Measure something

CLOCK

RC -> 10%, not accurated
 This is the solution used in the the input sensor boards from Niel.

If you see strange comunication, there are two solutions:

- 1 Software: Adjust the timing comunication.
- 2 Hardware: More accurated clock with resonator.
- Resonator -> 0.5%

MAGNET FIELD

- Application: Magnetic field / proximity (you place a magnet in the area you want to monitor)
- Sensor: Hall Effect Sensor
- It provides an Analog Output that is proportional to the magnetic field.

Schematic

TEMPERATURE

- Application: Temperature
- Sensors:
 - -- NTC

Temp down -> Res down -> Vt up

-- RTD

Temp down -> Res up -> Vt down

They are resistors which are sensitive to the Temperature

Simplest Schematic (no Niel)

Niel Schematic

TEMPERATURE

Code

1) Simplest Way: Measure only VT

2) Niel's way: It makes the difference between two pins and doing gain (x20).
Measures the difference between Vref – VT

LIGHT 1

- Application: Light / Proximity
- Sensor: PhotoTransistor.
 It has orientation: Collector + Emittor.

• When there is light -> current -> voltage

Code I read VL

GND

LIGHT 2

- Application: Light / Proximity
- It has orientation: Collector + Emittor
- Reflettive light: the light that I'm producing.

Code

I measure the difference between the generated light of the led and the sensed light from the phododiode.

It makes the difference between VL - VT.

Schematic

GND

STEP RESPONSE 1

- Application: resistance, capacitance, inductance, position, pressure, proximity, tilt, acceleration, humidity, touchpad, multitouch..loading
- Funny Part: Go wild with the PAD you can make with the Vinyl cutter!!!!!!!!!

Code Read V_SEN

C Code from Niel.....watch the lesson.

Schematic

STEP RESPONSE 2

• Application: button that sense proximity, liquid precence, force sensor, position (sliding or coaxial)

Code Read V_SEN

C Code from Niel.....watch the lesson.

ACCELEROMETER

- Application: rotation, acceleration
- Sensor: accelerometer

Schematic

SOUND

- Application: Sound
- Sensor: MIC

Code: Measure the difference between the two pins of the MIC and it amplifies it through the OP-AMP.

DISTANCE

- Application: Distance
- Sensor: UltraSonic
- 4 Pins:
 - -- VCC
 - -- GND
 - -- OutPut pin
 - -- Input pin

Code

Arduino Libray:

- <u>https://code.google.com/p/arduino-new-ping/</u>
- http://www.instructables.com/id/Hc-sr04-Ultrasonic-Distance-Sensor/

DISTANCE - Example

https://code.google.com/p/arduino-new-ping/wiki/Simple_NewPing_Example

VIBRATION

- Application: Vibration
- Sensor: Piezo
- 4 Pins:
 - -- VCC
 - -- Input pin

Code

Arduino Libray: http://arduino.cc/en/tutorial/knock

VIBRATION - Example

http://www.learningaboutelectronics.com/Articles/Piezo-knock-sensor-circuit.php

MOTION

- Application: Motion
- Sensor: PIR
- 3 Pins:
 - -- VCC
 - -- GND
 - -- Digital Output
- Arduino Libray:
 - https://learn.adafruit.com/pir-passive-infraredproximity-motion-sensor/using-a-pir

MOTION Example

https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/using-a-pir

