
Networking and communication
FabAcademy 2019

Wired Communication

• Asynchronous
• SPI
• I2C

Asynchronous Serial
It is the protocol also used by the mcu (attiny45, atmega….) when you print

some information to the Serial Monitor.

Asynchronous means that data is transferred without support from an external
clock signal.

No Clock => Rules

Rules:
- Data bits,
- Synchronization bits,
- Parity bits
- Baud rate.

Asynchronous Serial
No Clock => Rules

Rules:

- Data bits,

- Synchronization bits,

- Parity bits

- Baud rate.

Baud Rate

How fast data is sent over a serial line: bps (bits-per-second).

“standard” baud:

 1200, 2400, 4800, 19200, 38400, 57600,115200

In term of time?

9600 bps -> 1/9600 = 104us

115200 bps -> 1/115200 = 8.7us

Asynchronous Serial
Packet and Bits

The	actual	info/data	
that	you	are	sending

It’s	optional

Start	and	Stop	define	 the	beginning	 and	the	end	of	your	packet

Asynchronous Serial
Packet and Bits

EXAMPLE

Asynchronous Serial
Hardware - Software

A universal asynchronous receiver/transmitter
(UART) is a block of circuitry responsible for
implementing serial communication.

If a microcontroller doesn’t have a UART (or doesn’t have enough), the
serial interface can be bit-banged - directly controlled by the processor.

This is the approach of Arduino libraries like SoftwareSerial library.

It’s the library that you use to read data from the Serial Monitor.

Reference: Niel’s boards and codes

https://www.arduino.cc/en/Reference/SoftwareSerial

https://www.arduino.cc/en/Tutorial/SoftwareSerialExample

Hardware

Software

Asynchronous Serial Bus

Bridge
Node	1

Node	2

Asynchronous Serial Bridge
Schematic

Asynchronous Serial Node
Schematic

Asynchronous Serial Bridge

Asynchronous Serial Node 1

Why SPI (Serial Peripheral Iterface)?
What is wrong with Asynchronous?
Both sides must also agree on the transmission speed (such as
9600 bits per second) in advance.

SPI – Serial Peripheral Interface

It’s a “synchronous” data bus, which means that it uses separate lines
for data and “clock” that keeps both sides in perfect sync.

SPI – Serial Peripheral Interface
Master:	it	generates	
the	clock	signal

SCK: Clock

MOSI: Master Out – Slave In

MISO: Master In – Slave Out

SS: to detect the Slave

SPI – multiple slaves

SPI

If you’re using an Arduino, there are two ways you can communicate with SPI devices:

You can use the shiftIn() and shiftOut() commands.

Or you can use the SPI Library, but it’s not developed for AttinyXX

Example: http://www.gammon.com.au/spi

Why I2C?

I2C
The best of the two worlds!

Those two wires can support up to 1008 slave devices.

I2C

Two types of frame:

- an address frame, where the master indicates the slave to which the message is
being sent 2)

- one or more data frames, which are 8-bit data messages passed from master to
slave or vice versa.

I2C

Start Condition:

- the master device leaves SCL high and pulls SDA low

- all slave devices on notice that a transmission is about to start

Address Frame:

- always first in any new communication sequence

 7-bit address, the address is clocked out most significant bit (MSB) first

 followed by a R/W bit indicating whether this is a read (1) or write (0) operation.

 NACK/ACK bit, for all frames (data or address).

I2C

Data Frames:

data can begin being transmitted. The master will simply continue generating
clock pulses at a regular interval, and the data will be placed on SDA by either the
master or the slave, depending on whether the R/W bit indicated a read or write
operation.

Stop condition:

Once all the data frames have been sent, the master will generate a stop
condition. Stop conditions are defined by a 0->1 (low to high) transition
on SDA after a 0->1 transition on SCL, with SCL remaining high.

I2C

Reference:

 Niel’s boards and codes

 Arduino Libraries, Attiny44:

 TinyWireM

 TinyWireS

 Arduino Libraries, AtMega328P:

 Wire

 https://www.arduino.cc/en/Reference/Wire

 https://www.arduino.cc/en/Tutorial/MasterReader

 http://www.gammon.com.au/i2c

I2C - Network

Master

Slave	2

Slave	1

I2C - Schematic Master

I2C - Schematic Slave

I2C - Master code

I2C - Slave code

