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Abstract 
 

Computer aided design has become affordable and ubiquitous, in part as a result of the development 
of open source design software and web-based 3D modeling tools. Consequently, a broad spectrum 
of individuals are expressing demand for access to digital fabrication tools that are capable of 
automatically rendering their computer-based designs into physical objects. In response, 
manufacturers have begun to produce low-cost versions of a limited set of automated, personal-use 
fabrication tools, including 3D printers and desktop milling machines. Simultaneously, groups of 
individuals and organizations are establishing community workshops where resources can be pooled 
to acquire industrial-grade machinery. Both of these approaches have been successful at increasing 
the penetration of digital fabrication capabilities into the general population. However, there are 
many industrial tools which currently have no consumer-centric equivalent, and for which demand 
is insufficient to warrant acquisition by a community workshop. Additionally, as digital design 
continues to find new applications among a larger and more diverse audience, new needs will likely 
arise for yet non-existent automated fabrication tools.  
 
Gestalt is an accessible and flexible control framework which aims to augment the ability of 
individuals to create new automated tools, and to thus self-extend their abilities to create objects 
which would be too tedious or impossible to create by hand. This work will enable individuals to 
rapidly construct controllers and rich user interfaces for automated personal fabrication tools. 
 
The approach taken is that of a software-based virtual machine controlling a physical machine. This 
allows for increased modularity in controller implementation, and tighter integration of the tool 
with user applications than is possible with traditional controller architectures. The foundation of 
the proposed system provides a means for building APIs to communicate with modular hardware 
components, and a method of combining the functionality of these components at the virtual 
machine level (rather than in hardware) to yield higher-level functionality. The Python library 
developed in this work enables the rapid construction of cross-platform virtual machines that are 
capable of representing and controlling a wide variety of tools over commonly available interfaces 
such as USB. Additionally, a matching C library assists in developing microcontroller firmware for 
building custom modular hardware elements that can communicate with the virtual machine. A 
spectrum of unique fabrication tools controlled using the Gestalt framework are presented as case 
studies which elucidate both the successes and limitations of our approach.  
 
Thesis Supervisor: Professor David R. Wallace
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Introduction 

Computation and fabrication have become inextricably intertwined. Products 
are designed and tested in a computational environment before being sent to 
computer-controlled tools where their digital descriptions are converted into 
physical objects. The parallels between software development workflows and 
modern hardware development have not escaped the Open Source Hardware 
Association (OSHWA, 2013), whose name reflects the notion that physical 
objects, too, start out as source code. One important difference between 
software and hardware still remains: there is as of yet no Universal Turing 
Machine1 for fabrication that is capable of expressing every form in every 
material. Instead, a wide variety of fabrication processes, and the automated 
tools that carry them out, dictate the patchwork language of forms and 
materials utilized by Designers, those who the author views as the 
Programmers of Things. 
 
Anybody with access to a computer and the Internet can become a 
programmer. Superficially this is because of the ease with which code can be 
encapsulated and reused, and with which algorithms and programming 
techniques can be shared. However at the foundation of this ability is 
universal access to a common set of tools for writing, compiling, and 
executing code. Indeed, this was the focus of the GNU project – started in 
1984 by Richard Stallman – that paved the road for the free and open source 
software movements. 
 
One of the exciting implications of the strengthening bond between 
fabrication and computation is the democratization of the tools and 
techniques for designing and building objects. The term object is used here in 
the most general sense possible, and includes anything which is designed and 
brought into physical existence – including mechanical artifacts, circuitry, 
chemical and biological compounds, etc. Ubiquitous access to computation 
promises ubiquitous access to design tools. However, still missing is a 
framework for ubiquitous access to the computer-controlled tools necessary 
to manifest digitally designed objects in the physical world. One solution to 
meet this need is communal workshops that make a variety of fabrication 
tools available to the community. This approach is embodied by the 
international FabLab network (Gershenfeld, 2012) whose associated 
workshops provide a standardized set of equipment and materials, and also 

                                                   
1 In 1936, Alan Turing published “On Computable Numbers” which developed a 
conceptual model for a computing machine able to follow any algorithm to its 
natural conclusion (Turing, 1937). The term Turing-complete is used to describe a 
computer language which is completely expressive in the same way as Turing’s 
machine. 
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by TechShop (Techshop, 2013), a for-profit organization which functions 
like a gym filled with machine tools rather than exercise equipment. This 
type of solution is found lacking for a number of reasons. One is pragmatic – 
while communal environments can facilitate knowledge sharing and provide 
inspiration, in the experience of the author they are not often conducive to 
the thought and reflection afforded by an individual working in their own 
studio. More importantly, the equipment available in a community shop is 
chosen according to the lowest common denominator. Common tools 
include laser cutters, 3D printers, and CNC mills. While these tools are 
expressive, they by no means cover the gamut of what is available. And what 
is available does not fully express what is possible. 
 
The solution proposed by this thesis is a framework that enables individuals 
to build their own digital fabrication tools. While the author recognizes that 
no single tool can serve as a universal fabricator, it is hoped that a tool for 
making tools will enable the development of an infinite ecosystem of tools, 
thus having a similar effect. In a sense, tools define the language with which 
we can express designs physically. Being able to extend this language 
ourselves is a liberating part of being able to design new things.  
 
The overarching philosophy behind the framework developed here is 
modularity, with the goal of providing the right granularity so that the 
greatest spectrum of fabrication machines can be realized with a minimum of 
repeated effort. There are many challenges associated with building an 
automated tool, broken down roughly into the mechanics, control system, 
and user interface. This work focuses the control system and user interface 
aspects of automated tools. The approach taken is that of a virtual machine 
controlling a real machine over a network. While not a new concept2, its 
application to personal fabrication (rather than industrial fabrication) shows 
promise for simplifying the implementation, use, and dissemination of novel 
automated tools. In this approach, machine configuration and state is stored 
in the virtual machine rather than in physical control hardware. This enables 
greater modularity in machine construction, and opens up new opportunities 
for interfacing fabrication tools more intimately with both user-written 
applications and web-based services. The framework has been successfully 
applied to the rapid development of control systems for several tools, 
including a machine for continuous printing of non-repeating patterns on 
masking tape, a personal Jacquard loom for weaving friendship bracelets, a 
DIY coil winder, a portable CNC multi-tool, and a desktop fabrication 
machine driven by distributed network of motor controllers.  
 
                                                   
2 The framework presented here bears many similarities to a system developed at the 
University of British Columbia (Oldknow & Yellowley, 2001) that is based on the 
concept of virtual and physical control modules interacting over a network. 
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A background section provides context for the present work. Following that 
is a description of the framework architecture, a review of related work, and a 
discussion of challenges faced and solutions adopted. A series of case-studies 
demonstrate the utility of the framework across a number of use cases and 
highlight its strengths and weaknesses. Finally, a discussion of the 
framework’s ability to reduce the effort needed to build and control 
fabrication tools is presented, followed by conclusions.
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Background 

Design as Programming 

When we design physical things, we are in a sense programming matter, 
encoding in the form and material of designed objects instructions on how 
they should interact with the world around them. Sometimes these programs 
are procedural, like the series of cams, gears, and shafts inside a car, each 
element sequentially transforming energy in an intentional manner along the 
path from the engine to the wheels. In other cases, the program executes in 
parallel, like the way that every strut of a bridge works in concert to support 
the weight of cars as they traverse a river. The precise patterning of transistors 
on a silicon wafer is a highly parallel program written by an electrical 
engineer to orchestrate the flow of electrons within a microprocessor. 
Sometimes the programs which designers write are intended to affect the 
world aesthetically rather than functionally: the shape, color, and texture of a 
vase are chosen to elicit an emotional response in someone who sees it.  
 
If the act of design is an act of programming, then form and material 
comprise the language in which designers write their code. Twisting steel rod 
into a helix yields a spring, a basic mechanical function that takes force as an 
input and yields deflection as an output. The helical form of the spring, 
coupled with the intrinsic properties of the material from which it is made, 
are the instructions that its designer uses to give the spring a specific and 
intentional behavior.  

Tools as Impedance Matching Devices 

Humans are soft and bluntly shaped creatures. On their own, our hands can 
only impart a limited set of forms onto an even more limited set of materials. 
Pottery and finger-painting are creative activities well matched to the 
qualities of our body. And yet humanity has built cities, spacecraft, and 
microchips. In order to adapt ourselves to the world around us, we employ 
what engineers call impedance matching devices. Below is an excerpt from an 
essay written by this author that describes the concept of matched 
impedance3: 
 

“If you have ever ridden a bicycle – especially a single speed bike – the concept of 
matched impedance is familiar to your legs if not also to your brain. In order to 
climb a particularly onerous hill you might pedal extremely slowly, wondering at 

                                                   
3 This excerpt is from an essay “Gestural Design” written by the author and self-
published in a limited quantity in July 2013. 
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times if you are capable of exerting the force necessary to keep moving. Suddenly 
the bicycle becomes the focus of your attention: you notice every degree of 
rotation that you manage to coerce out of the crank arm. On your way back 
down, the situation reverses. With your legs spinning fast-as-they-can, the bicycle 
settles at a top speed seemingly irrespective of your contributions. Now it is your 
legs that are opaque. If only they were a bit lighter and able to whip around even 
faster, you could apply some force to the pedals and accelerate. 
 
The joy of cycling exists at neither of these extremes. There exists a feeling, which 
we occasionally achieve, when the bicycle and our legs meld into one and we feel 
the road. Power is effortlessly transmitted from our muscles to the wheels and 
converted into motion. Not only do we feel acceleration; we feel control. The 
results of our intent are immediately transmitted back to us as action. In this 
moment we experience the magic of matched impedance. 
 
The term matched impedance has its origins in engineering. It can be shown that a 
motor will accelerate a load (such as a vehicle) the fastest when the effective 
impedance of both are equal. In the field of electronics, impedance mismatches 
cause signals to bounce back to the sender rather than transmit in their entirety. 
This effect can be seen when playing pool – a direct hit brings the cue ball to an 
immediate stop while the struck ball speeds off with hardly any energy lost in the 
exchange. This would not be the case if the cue ball was replaced with a whiffle 
ball, or a bowling ball. Matched impedance explains why a metal surface feels 
cooler (or hotter) to the touch than a plastic one, and why propeller blades are 
shaped differently for airplanes than they are for boats. 
 
It is frequently the case that two objects with mismatched impedances are forced 
to work together.  A bike rider and the hills of San Francisco, for example. Seeing 
as neither will readily change to suit the other, we employ what engineers call an 
impedance matching device. In the case of the cyclist, this comes in the form of 
gears. For electrical signals the analog is called a transformer. 
 
For many of our daily tasks, and particularly when we create, we require 
something extra to adapt ourselves to our work. Tools pick up where our hands, 
and brain, leave off. Some tools are like the low gear on a bike… one push and 
you’re flying. A calculator accepts a simple input and spares your mind the 
tedious computations necessary to yield an answer. Other tools, like a hammer, 
act more like high gear. A slow swing of the hammer over a long distance results 
in incredible force over a short distance. From an engineering perspective, a 
hammer is quite similar to a gear box. Even the design of the hammer is 
indicative of its impedance-matching role: a relatively soft wood or rubber handle 
couples the tool to our hands, while a hard and tough steel head is well suited to 
interact with a nail. Tools are by their nature impedance matching devices.” 

 
Tools as impedance matching devices serve two purposes. The first is to give 
us access to a broader range of forms and materials. This is analogous to a 
bike rider who switched from a single-speed to a geared touring bike and can 
now climb hills previously too steep. The effect is to expand the language of 
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form and material with which we can program objects. The second purpose 
of tools is not to make something possible, but to make it enjoyable. Like 
having precisely the right gear to go flying down a lightly sloped hill. Tools 
help us to achieve this by enabling us to operate in our region of maximum 
mechanical and intellectual power output. To summarize, we might say that 
tools both extend our language for programming objects, and make the act of 
programming more efficient and fun.  
 
Hand tools, like the hammer, are passive objects that derive all of the energy 
required for their operation from the user. Thus their role is both as a 
transformer of mechanical power and also of intellectual flow. Often, 
however, these roles are at odds with each other. The weight of the hammer 
is a key property that allows the hammer to match physical impedances 
between us and the nail. If the hammer is too light, we might expend more 
energy propelling our arm than we are able to impart to the hammer. 
Conversely, too heavy of a hammer and we can barely lift it. Simultaneously 
the weight of the hammer also acts as a limiting factor in the rate at which it 
can be operated, thereby limiting the rate at which one’s intentions (fastening 
two pieces of wood together, for example) can flow from the brain into 
reality. 
 
Powered hand tools strive to decouple their mechanical and intellectual 
impedance-matching roles. The pneumatic nail gun uses energy stored in 
compressed air to apply the driving force, permitting the user to focus on the 
more cerebral activity of locating the nail. Manual machine tools (which I 
will loosely consider a powered ‘hand’ tool) provide greater rigidity for 
working with metals, and a means of precisely positioning a tool relative to 
the work. In both examples it is soon discovered that eyes move faster than 
hands. Even when isolated from much of the mechanical loading of a task, 
now our bodies, rather than the tools in our hands, become the dominant 
impediment between our brain and its desires. 

Virtual Objects 

Hand tools and powered hand tools embody what might be called the direct 
approach to the programming of objects. For a certain range of tasks, directly 
manipulating matter using a tool in our hands is best. Driving a nail in the 
wall to hang a picture, drilling a hole in a piece of wood, and maybe even 
machining a simple rectangular shape on a milling machine are all activities 
easily done in this way. However, the direct approach has many limitations 
that often coincide with persisting impedance mismatches between our brains 
and/or bodies and the task at hand. Forms that involve high precision like the 
exact placement of locating pins, repetition like a square array of 10,000 
holes, or complexity like the surface of a jet engine turbine blade, lie far away 
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from our corporeal sweet spot. It is much easier for us to specify these 
features than to create them with our hands. ‘A square 100x100 array of ¼” 
holes on 1” centers drilled to a depth of 0.5”’ is written in 20 seconds but 
would take a human orders of magnitude more time to execute. The 
common solution to the problem of us becoming mentally bogged down in 
the manifestation of our designs is to separate design from fabrication. This 
indirect approach allows us to work with a completely new set of tools which 
are far better matched to our intellect; tools which permit faster creation of 
form (irrespective of material properties), do not penalize heavily for 
correcting mistakes, and which allow us to speak our intent in a more native 
language than that of form and material.  
 
The idea of imparting form on conceptual material is not new. Perhaps the 
designers of the pyramids drew out these great structures on parchment 
before setting their slaves to work. In engineering, the blueprint was for a 
long time the medium for the designer to manipulate the concept of matter 
rather than the matter itself. More recent innovations have given us new tools 
for manipulating virtual material as a stand-in for the real thing. 
 
Computer Aided Design (CAD) is an umbrella term that describes a host of 
tools for programming physical objects, virtually. In its most basic form, 
CAD provides a toolset for directly shaping virtual material analogous in 
ways to the physical tools we use to shape real matter. For example, many 
mechanical CAD programs provide virtual tools for extruding and cutting 
3D geometry based on 2D drawings. Additional tools will round edges 
(much as a file or corner-rounding end mill might do in real life), revolve 2D 
profiles to create axisymmetric objects, sweep profiles along arbitrary paths, 
and many more. The material within CAD is completely malleable in a way 
that most real materials are not. We can push and pull on it, twist it, bend it, 
even create geometry which cannot be fashioned using real tools. We can 
specify the size and position of features with near-infinite precision. The 
power of CAD is derived from a much closer impedance match between our 
brain and the computer than between our brain and the physical world. We 
wield virtual tools with a computer mouser or stylus (and perhaps one day 
our brainwaves). Airplanes and submarines are built virtually by hands 
moving within a work area of only a few square feet. 
 
Perhaps the greatest advantage to designing virtually using a computer is the 
computer’s ability to speak with us on a higher level than raw geometry. To 
understand this, consider the basic calculator. A calculator is an impedance-
matching device in the sense that we can communicate to it some long 
multiplication task, and it performs the tedium of deriving an answer. The 
same information is present both before and after the calculation, yet it is in a 
more meaningful form beforehand. For example, the price of 134 eggs at 43¢ 



 19 

per egg is $57.62. However it is not only easier for us to think in terms of 
quantity and cost, but the logic of the calculation is still available to us should 
we decide that really we want 136 eggs. Similarly, computer aided design 
becomes more powerful when used as a geometric calculator rather than as a 
souped-up drafting table. Another way to understand this is in terms of the 
analogy between physical programs (i.e. objects) and computer programs. In 
computer programming, ‘assembly language’ is the most basic human-
readable set of instructions available for controlling the behavior of a 
computer. The physical language of form and material is like assembly 
language for the real world, providing the commands that dictate how 
physics will cause an object to behave. In both cases, programming requires a 
deep understanding of the mechanics of the machine. While it is possible to 
program in assembly language directly, there are many advantages to using a 
higher-level language because it removes complexity and tedium while 
enabling modularity and the capture of design logic. Using CAD as a 
geometric calculator permits us to program objects in a higher level language 
that is better matched to how we like to think of problems. 
 
Computer aided design tools can act as calculators is several ways. The first 
method – constraint-based modeling – harks back to the very origins of 
CAD. In 1963 Ivan Sutherland published his work on the world’s first 
computer aided design tool, called SketchPad (Sutherland, 1964). One of the 
primary contributions of Sutherland’s work was what he called “constraint 
capability”, which gave the designer the ability to convey their intent to the 
computer rather than just its geometric result. Sutherland provides an 
example of SketchPad’s constraint capability in the introduction to his PhD 
thesis, in which the user creates a regular hexagon by first drawing an 
irregular hexagon and then constraining all sides to be equal and each vertex 
to lie on the perimeter of a circle. 
 
Constraint-based modeling helps designers find geometric solutions to 
geometric problems, like answering which joint positions and link geometries 
will cause a linkage to pass thru a series of points. For a limited set of 
behaviors, particularly for making parts fit together, constraint-based 
modeling is very useful. But this technique is material independent, which 
eliminates its utility at programming material-dependent behavior into 
objects. 
 
In order for computers to provide the designer with a truly high-level 
language for programming physical objects, a way is needed to predict the 
behavior of materials. One method of achieving this is with analytic 
formulas. For example, the designer might input an equation describing a 
spring, along with its size, material properties, and desired stiffness. Based on 
this equation, the proper wire diameter is automatically determined and a 
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virtual spring is generated. This approach only works for a small subset of 
geometries and functions for which there are analytical formulas. In order to 
predict the real-life behavior of arbitrary shapes, a finite element analysis 
(FEA) method is used. FEA simulates the overall behavior of an object by 
converting it into a mesh of points and evaluating constitutive equations at 
each point. For example, the overall deflection of a spring under load could 
be calculated by determining the minute deflections at each point along its 
helix and then summing them (this is somewhat of a simplification). Because 
this technique is totally general, it applies to springs of any shape and size. 
The results generated by FEA can then be used to influence the solid model, 
allowing the designer to find the ideal form and material to achieve a desired 
behavior. 
 
One of the benefits of capturing the designer’s intent rather than just 
geometry is that virtual objects become easily shared and modifiable by 
others. For example, a solid model of a teacup might be embedded with logic 
that constrains its proportions to the golden ratio. Its wall thickness might be 
derived from an FEA calculation that ensures that the walls can withstand the 
hydrostatic pressure of its contents and the gripping force of its user. If 
somebody other than the designer wanted to modify the cup to hold twice as 
much liquid, they could change a single number and otherwise preserve the 
‘programming’ of its designer which ensures that the cup will function as 
intended. This type of encapsulation is called ‘parameterization’, and enables 
libraries of objects similar to how computer programmers create and reuse 
libraries of code functions. 
 
It should be noted that analogous CAD tools with simulation capabilities 
exist for many fields of design, not just the mechanical arts on which the 
examples of this thesis focus. Electrical engineering, architecture, chemistry, 
and biology all have computer-based tools for giving form to material, and 
for simulating virtually the effects which various forms and materials will 
have on the behavior of the thing being designed.  

Numerical Control 

Manipulating virtual materials using virtual tools to fashion virtual objects is 
an incredibly powerful paradigm for design. Yet the whole practice is 
impotent unless these virtual objects can be fabricated in the physical world.  
The original approach adopted by designers was to have another human act 
as the impedance-matching device between their blueprint and the set of 
manual tools necessary to build the object. This is how the aircraft of World 
War II were built, and Ford’s Model T before that. Part drawings were 
handed to rooms of machinists, who would toil away attempting to mirror 
concept in matter. This process is fraught with inefficiencies, both in terms of 
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communication and also execution. For example, the dimensions favored by 
designers are different than those needed by machinists. The way that 
features are dimensioned carries with it implications for what matters to the 
designer. Dimensioning two holes, both from the corner of a rectangular 
block, is very different from dimensioning them relative to each other and to 
the corner. The former implies that the absolute position of the holes relative 
to the corner is what matters, while the latter implies the distance between 
them is more important. However, when a machinist builds the object, they 
need to know the position of the holes relative to where they zeroed their 
tool. This discrepancy requires that somebody – either the designer or the 
machinist – must translate between these languages. Equally problematic as 
communication is execution. The issues with manually controlled tools – the 
difficulty of achieving precision, repetition, and complexity – slows down 
and in some cases restricts the ability of the machinist to bring the designer’s 
plans to life. 
 
One partial solution to these difficulties with fabrication is a tool that can be 
driven directly and automatically from a virtual design. The first widely 
adopted automated tool was Joseph-Marie Jacquard’s loom for weaving 
decorated fabrics, which he patented in 1804 (Essinger, 2004, p. 37). Textiles 
are woven by repeatedly passing a transverse thread called the weft over or 
under a series of longitudinal threads called the warp. In order to weave 
patterns into fabric it is necessary to control which warp threads are up and 
which are down when the weft thread is passed between them. The first loom 
to provide individual control of each thread, known as a drawloom, was 
invented in China around 200BC (Essinger, 2004, p. 10). The drawloom 
required a ‘drawboy’ to sit atop the loom and selectively lift the warp threads, 
while the weaver would shuttle the weft thread back-and-forth. The Jacquard 
loom automated the task of the drawboy by selecting warp threads under the 
mechanical control of a series of punched paper cards. The result was that 
fabric could be woven 24 times faster with half the manpower (Essinger, 
2004, p. 38). 
 
Most importantly to this thesis, the Jacquard loom as the first automated tool 
represents the birth of the now-ubiquitous process of design -> compile -> 
execute. The pattern to be woven is first designed by the artist. The next step 
is compilation: expressing the design in terms of the motion of the machine, 
and encoding these motions in punched paper cards. This was accomplished 
by converting the image into, in essence, a pixel graphic using a method 
called ‘mise en carte,’ which was then easily transferable to punch cards 
(Essinger, 2004, p. 282). The resulting program was then executed on the 
loom to create bolts of beautiful fabric. 
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It was Charles Babbage who first identified the value of the workflow of 
design -> compile -> execute to the field in which we now most commonly 
recognize its presence: computation. Charles Babbage’s Analytical Engine, 
arguably the world’s first computer, was debuted to the world in a paper 
published by Federico Manabrea in 1842 (Essinger, 2004, p. 122). Like the 
Jacquard loom, it accepted instructions as punched cards that commanded its 
machinery to perform a sequence of mathematical operations including 
storing and accessing results. Indeed, the connection between the Analytical 
Engine and the Jacqurd loom is central to James Essinger’s book ‘Jacquard’s 
Web’. Babbage describes his Analytical Engine as a completely general tool 
for calculating mathematical formula according to the instructions conveyed 
to it by its program (Essinger, 2004, p. 89). In essence, Babbage is describing 
the same process of design, compile, and execute which we observed with the 
Jacquard loom. Algorithms for evaluating mathematical formulae (the 
‘design’) must be compiled into a series of instructions that the Analytical 
Engine is able to execute within its electro-mechanical hardware. While 
Babbage’s Analytical Engine was never completed, it undoubtedly laid the 
intellectual foundation for the modern computer. 
 
Not until 1952 does the history of the computer once again cross paths with 
fabrication machinery. It is in this year that John Parsons, Bell Aircraft, and 
the MIT Servomechanisms Lab built the first numerically controlled (N.C.) 
milling machine (Noble, 1978, p. 326). On a traditional milling machine, a 
block of material is clamped to a moving table and introduced to a spinning 
blade under the guidance and mechanical force of a trained machinist. 
Material in the path of the blade is removed until the desired shape is 
achieved. Numerical control did for machining what the Jacquard loom did 
for weaving: it made practical far greater complexity of fabrication by 
wresting direct control of the tool from the operator and placing it under the 
command of a program encoded on magnetic tape. The workflow of 
numerical control, like the Analytical Engine and the Jacquard loom before 
it, follows the paradigm of design->compile->execute. An object is designed 
virtually, tool motions to create the object’s form are generated, and finally 
these motions are run on the machine to create the physical object.  
 
In the intervening years between then and now, numerical control has 
become ubiquitous in manufacturing, operating at the terminus of an all-
digital workflow that interfaces designers and their virtual objects to physical 
manifestations of their designs. NC has since been applied to many more 
tools and processes beyond the vertical milling machine on which the 
technology was first developed. Examples include but are by no means 
limited to: lathes, boring machines, grinders, turret punches, water-jet 
cutters, laser cutters, 3D printers, welding robots, knitting machines, 
laboratory robots, DNA sequencers, etc. 
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Personal Fabrication 

“Capitalist production is the activity of a Divided Humanity, of two separate 
and antagonistic classes of human beings” wrote the technology historian 
David Noble in his paper Social Choice in Machine Design: The Case of 
Automatically Controlled Machine Tools, and a Challenge for Labor (Noble, 
1978). His essay argued that machine tools, and N.C. specifically, evolved 
under the selective pressures of corporate management to usurp control of the 
factory floor from the working class. Importantly, Noble asks the question: 

“… is it really necessary to divide the programming and machine operating 
functions within the shop? Could programming, like other tooling, be done 
closer to the floor or by people on the floor?” (Noble, 1978, p. 323). 

 
Within the field of manufacturing – the original benefactor of numerical 
control – there still exists a sharp divide between the designer of objects and 
the machinist who operates the now-automated tools of production. Noble 
was commenting on the fact that industrial NC tools are designed for a 
system where the tool’s operator sits in a different room, and maybe a on 
different continent, than the person who generated the instructions which 
the tool follows. Yet the ubiquity of computation and the low cost of 
electronics have recently made the tools for design and fabrication available 
to an entirely different demographic with completely different needs. 
 
Access to computers is now ubiquitous within most developed countries. The 
relatively recent availability of freely accessible CAD software puts the tools 
to create virtual objects within the hands of the masses. These free CAD tools 
can take many forms. One example, called SketchUp (Sketchup, 2013), is 
essentially a 3D drawing program. Virtual tools are provided to add and 
remove material, but there is no way of imposing constraints or conducting 
analysis as is available in professional CAD packages. Nearly the polar 
opposite to SketchUp is a Python library called OpenSCAD (OpenSCAD, 
2013). Objects are literally programmed by specifying shapes algorithmically. 
For users comfortable with programming in Python this provides the ability 
to create geometry that would be otherwise incredibly tedious and difficult to 
draw by hand. Designing objects using code also encourages parameterization 
and reuse of objects, like the teacup discussed earlier. Despite the availability 
of free CAD programs like SketchUp and OpenSCAD, a steep learning curve 
still  presents a barrier to their widespread accessibility. Recent attempts to 
circumnavigate this issue are based around the concept of the ‘customizer’. 
Embodied by services like MakerBot’s Customizer (2013) and Shapeways’ 
Creator (Shapeways, 2013), this approach provides a parameterized model 
that the user can tweak to design a unique and custom-tailored object. For 
example, a basic design for a ring can be adjusted digitally to fit an 
individual’s finger and preferences for width. With all of these means at the 
disposal of the individual designer to create virtual objects, it is important 
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that the tools to convert between virtual and physical become equally 
accessible. 
 
Numerical control, which revolutionized mass manufacturing, has significant 
utility to the recently empowered individual designer. Numerically controlled 
tools, being almost entirely automatic, obviate much of the specialized skill 
previously necessary for the operation of similar manually controlled 
machines. In the case of milling, precise coordination of multiple 
simultaneous axes – a task difficult for even highly skilled machinists – is 
performed by the computer. Feed rates are tightly controlled, and the 
positioning of features like drilled holes is done with unwavering precision. 
The benefit of abstracting away manual skill is two-fold. First, tools that 
previously required years of training to operate skillfully are now accessible to 
individuals with only minutes of exposure. Second, the output of these tools 
is consistent both in time and space. A single tool will not only reliably 
produce the same output for a given design input, but the same design will 
yield the same result on different tools of the same type. This latter point has 
profound implications for the ability to share and reproduce designs globally. 
 
Design has become easier and more accessible because widely available tools 
allow us to interact with virtual matter at a logical rather than just a 
geometric level. Techniques such as parametric design permit sharing of 
geometry and the reuse of design logic. Simultaneously, the tools for 
interacting with physical matter have become nearly automatic. These 
technological forces have enabled a number of social movements around the 
design and construction of things. 
 
‘Personal Fabrication’ is the term used by Prof. Neil Gershenfeld of the MIT 
Center for Bits and Atoms to capture the fact that individuals are often 
motivated to design products solely for themselves without any regard for a 
larger market demand or the potential to make profit from their work. 
Gershenfeld states “As it turns out, the ‘killer app’ in digital fabrication, as in 
computing, is personalization, producing products for a market of one 
person” (Gershenfeld, 2012). The digital fabrication workflow is indeed well-
suited to support the activity of personal fabrication, where an individual is 
designing and producing entire products themselves. This demands design 
skills in the domains of mechanics, electronics, and software. The ability to 
learn from and build off of other people’s work is thus essential. Additionally, 
the budget of the individual is frequently meager, which necessitates low cost 
tools with shallow learning curves for prototyping and fabricating. 
 
The ‘Maker Movement’ is a (conveniently named) label created by Make 
Magazine to describe a growing social trend centered upon personal 
fabrication. This is supported by a series of ‘Maker Faires’ held each year 
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around the globe that gives ‘makers’ a forum for sharing their work. In ways 
the Maker Movement builds on ‘Do It Yourself’ (DIY), fuelled by wide 
access to computer-based tools and information for designing and building. 
Over 110,000 people attended the 2012 Maker Faire in San Mateo, SF 
(Make Magazine, 2013), indicating the cultural importance of the 
movement. 
 
The Open Source Hardware Movement adopts an approach to developing 
physical objects which is philosophically similar to open source software in 
that it exhorts modularity and the sharing of design logic, so that it becomes 
possible to build on others work. A key component to the Open Source 
Hardware Movement is the license under which designs are released. A 
variety of licenses have been developed, many by Creative Commons, which 
protect certain rights of the original author of a design while permitting 
others to build on their work. For example, the ‘Creative Commons 
Attribution’ license “lets others distribute, remix, tweak, and build upon your 
work, even commercially, as long as they credit you for the original creation” 
(Creative Commons, 2013). Open source hardware, like open source 
software, fundamentally depends on a common framework for designing and 
building. Because only digital files are shared, digital fabrication tools are an 
implied necessity in order to ensure that the same file results in the same 
output regardless of who is building the object described by the file. 

Automated Tools for Personal Fabrication 

Much of the recent cultural activity in the realm of personal fabrication is 
predicated on access to tools for digital design and computer-controlled 
fabrication. This new generation of ‘makers’ has a perspective on fabrication 
machinery which is entirely different than that held by industry. For the 
maker, the computer is the tool. The fabrication machine is simply an 
extension of the computer. An apt analogy is that of the computer and the 
desktop printer. We don’t think of a printer as a tool, as we spend the vast 
majority of our time creating a document, and only seconds clicking ‘print’. 
Yet the commercial press-person most certainly does view their offset press as 
a tool. The role of tools is to match impedances, and computer-aided design 
matches intellectual impedances between our brains and the virtual objects 
which we design; digital fabrication tools adapt between the computer and 
physical matter, and are thus ideally completely decoupled from us as 
designers. In our non-ideal reality, these tools can only get in our way – when 
they malfunction. The disparity in perspectives between industry and the 
individual designer/maker means that the majority of digitally controlled 
tools – which do a fine job of impedance matching within an industrial 
setting – are wholly mismatched to the approach and needs of the individual. 
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One area of dissonance between makers and modern digital fabrication tools 
is cost. Industrial machines prioritize speed, reliability, and precision. Speed 
is important because it is directly correlated with greater productivity and 
thus higher profits. Reliability is essential because machine downtime is 
expensive in terms of profits not made. Machine precision is important for 
statistical reasons: in a mass-production setting where the standardization of 
parts is fundamental, higher machine precision increases the yield of parts 
that fall within tolerance. These attributes are irrelevant to the individual if 
their optimization makes the tool unaffordable.  
 
Affordability is a major factor that places most automated industrial tools 
outside of the reach of the individual. This fact has driven the development 
of lower cost alternatives. The difference in design approaches for industrial 
tools versus hobbyist tools might be described in terms of maximizing versus 
satisficing4.  This is evidenced by many of the fabrication tools found in 
community shops – often called ‘hackerspaces’ – around the world. Popular 
tools and brands include 3D printers by MakerBot, laser cutters by Epilog, 
and gantry routers by ShopBot. These tools sacrifice capability, speed, 
reliability, precision, and sometimes a degree of automation, at the benefit of 
far lower cost. The present-day MakerBot is a less capable version of a 
$30,000 machine produced by Stratasys, but costs an order-of-magnitude 
less, thus making it accessible to a far wider audience.  
 
Besides the needs and constraints of the individual, there is the entirely 
separate issue of how the individual approaches digital fabrication tools. 
Their goal is to reproduce verbatim an object that they have designed on 
their screen; a very similar situation to the writer who has spent months 
writing a manuscript and is now ready to send it to their printer. In this way 
the role of the tool is perfunctory. This is a very different approach than that 
taken by industry, where the tool has its own operator, and part programs are 
not generated by the operator. Unfortunately, many of the low-cost digital 
fabrication tools intended for makers adopt the same philosophical approach 
as their industrial kin. Tool motions must still be ‘compiled’ separately from 
the design file, and transmitted using an archaic and overly restrictive 
language called G-Code to the tool. Then, a unique user interface is present 
at each tool to control its operation. 
 
To reiterate what we claimed earlier, the role of tools as impedance-matching 
devices is twofold: tools broaden the language of forms and materials that are 
accessible to us, and they make the manipulation of materials easy and 
enjoyable. Personal fabrication tools presently fail on these criteria. There are 
only a few types of tools currently available, and the cost of these tools still 
                                                   
4 See Herbert Simon’s Rational Choice and the Structure of the Environment (Simon, 
1956). 
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places them outside the budget of many individuals. At the same time, their 
adoption of industrial approaches to user interface makes them less accessible 
to those who do own them. When we take the view that tools are an 
extension of the computer, the way in which they should be designed 
completely changes. Just as we write code to extend for ourselves the abilities 
of the computer, and in fact the capability to do so is increasingly seen as 
something of a basic literacy, so too should we as users be able to extend the 
computer’s reach into the physical world. Tools should be accessible by web 
browsers, as are many of the computer’s other resources such as mouse, 
keyboard, monitor, speakers, microphone, and camera. This would both 
enable more familiar tool interfaces to the modern user, and also enable 
interfaces which are common to applications rather than to brands of tools. 
Browser-accessible tools could also enable more streamlined workflows 
between browser-based design tools, online repositories (of parts and 
techniques), and digital fabrication machines. Another implication of the tool 
as an extension of the computer is that user-written software programs should 
be better able to interface directly with tools. This is particularly important 
for when a design is expressed algorithmically in terms of tool movement. An 
example of such algorithmic design is the dragon curve of Figure 1 (Gardner, 
1967), which was generated by a recursive algorithm around 40 lines of code 
long (although ignoring implementation details the algorithm is much 
shorter). 
 

 
Figure 1: The Dragon Curve 

The plotter which drew this dragon curve was controlled by the framework 
presented in this thesis; the dragon curve algorithm made function calls 
directly onto the plotter’s virtual machine. Another area where algorithmic 
control of tools may find use is in biology research. Often times the protocols 
which biologists follow, frequently requiring both copious and tedious 
pipetting, are indeed simple algorithms that might be expressed easily as a 
short Python script. 
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The Gestalt Framework 

Introduction 

This thesis develops a framework, called Gestalt, for rapidly building 
controllers for automated machinery. Examples of devices that could be 
controlled by Gestalt range from traditional hobbyist machine tools like 3D 
printers and CNC mills to less conventional machines like Jacquard looms, 
laboratory equipment, robotic arms, etc. The name Gestalt was chosen for 
the framework because its meaning – “an organized whole that is perceived as 
more than the sum of its parts” (Oxford Dictionaries, 2013) – suits Gestalt’s 
modular yet cohesive approach towards structuring the architecture of 
machine controllers. The overarching decision guiding the design of Gestalt, 
and distinguishing it from many existing controls frameworks, is that it 
should be accessible to individuals for personal use. This has shaped every 
aspect of Gestalt’s development, from the language it is written in to the 
hardware that it will run on and the ways in which it communicates with 
external components. Gestalt is currently written in Python because of 
Python’s extensive documentation, huge collection of user-created libraries, 
and cross-platform portability. External communication and synchronization 
is supported over commonly available interfaces like USB virtual serial ports, 
which allows Gestalt to interface with a wide variety of existing hobbyist and 
commercial hardware while making it easy for individuals to develop new 
compatible electronics. Python’s cross-platform nature, coupled with 
Gestalt’s ability to communicate over USB, makes it possible to run machine 
controllers on the recently released $25 Raspberry Pi (Raspberry Pi 
Foundation, 2013). 
 
The Gestalt framework is comprised of an extensible collection of software 
modules that can be combined in many ways to quickly realize machine 
controllers. An example configuration is shown in Figure 2, which contains 
many of the common elements found in a typical machine controller. A 
physical machine is comprised in part by a number of electronic and electro-
mechanical hardware components. A series of physical control nodes provide 
low-level control of the machine components, and connect to the Gestalt 
virtual machine via either a direct connection or a network bus. Each physical 
control node is matched by a virtual node that exposes to the virtual machine 
the functions needed to control its specific hardware. The virtual machine 
additionally might contain kinematic definitions, memory of state (i.e. 
position), machine-level functions (e.g. to move the machine) and external 
interfaces through which user applications can control the machine. 
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Figure 2: Components of the Gestalt Framework 

Gestalt views automated tools as a series of nested layers as shown in Figure 
3. The component layer is the most fundamental, and encompasses the 
electro-mechanical elements of the tool, such as actuators and sensors, along 
with their corresponding low-level control elements. For example, in a 3-axis 
milling machine, the component layer might consist of three stepper motors 
and their controller/driver boards, along with the spindle motor and its 
controller/driver. The machine layer is the point at which component-level 
functionality combines to create machine-level functionality. In the example 
of the milling machine, the machine layer is where lead-screws or belts 
convert the rotation of stepper motors into stage motion. The application 
layer is where the functionality of the machine is applied by its user to 
perform a particular task, such as milling a circuit board. 
 

 
Figure 3: The Gestalt Automated Tool Model 
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The approach adopted by Gestalt is that of a virtual machine controlling a 
real machine. The virtual machine is a computer-based representation of the 
physical machine that often times will run on the user’s computer. Machine 
configuration and state is stored in the virtual machine, rather than in the 
physical hardware which controls actuators and reads sensors. The virtual 
machine approach has advantages over traditional machine controllers in 
every step of the chain of building and using automated tools, benefitting 
four primary types of users corresponding to the layers of Figure 3: the 
component controls builder, the machine builder, the application designer, 
and the end user. Sometimes these will all be the same person!  
 
The Component Controls  Builder : Components form the physical 
language from which an automated tool is built. Common electro-
mechanical components include stepper motors, DC motors, limit switches, 
relays, and a variety of task-specific actuators and sensors. In order for these 
components to interface with the greater control system, they often require a 
control board that abstracts away the details of their operation. For example, 
a stepper controller might accept a logical command like “spin 100 steps at a 
rate of 10 steps/sec” and converts that command into the low-level pulses of 
current that cause the motor to move accordingly. Typical controllers accept 
these high-level commands over a physical interface like a serial port, 
requiring that all of the command processing occurs on the hardware of the 
controller (Figure 4).  
 

 
Figure 4: A traditional approach to component control. 

 
The virtual machine approach assists the component control builder by 
allowing them to own both sides of the physical interface. The control 
builder writes both device-based firmware and a matching computer-based 
device driver as shown in Figure 5.  

 

 
Figure 5: The Gestalt approach to component control. 

This makes the task of writing firmware easier, and permits the firmware to 
run more efficiently, by allowing complex calculations to be written in a 
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language like Python and performed on the computer, while time-sensitive 
calculations, like when to take a step, are performed in firmware. In the 
language of Gestalt, the physical controller is known as a node, and the 
computer-based driver is a virtual node. A set of Gestalt libraries written in C 
and Python handle communication between nodes and virtual nodes 
respectively. Device drivers can also be written for pre-existing hardware that  
uses the traditional approach shown in Figure 4, without utilizing the Gestalt 
communications libraries or protocol. 
 
The Machine Builder : The machine builder uses Gestalt to create 
controllers for automated tools. The task of these controllers is to unify the 
components of the machine into a cohesive whole, and to present a high-level 
interface to external applications.  
 

 
Figure 6: A Three-Axis Machine Controller 

For example, an individual might be building a three-axis positioning stage 
using three stepper motors as shown in Figure 6. A machine controller is 
needed which can synchronously control these motors to cause the stage to 
move, and also exposes an API to task-specific applications that wish to 
control the machine. This controller is referred to as the virtual machine 
because it is a software representation of the physical machine. The virtual 
machine approach of Gestalt makes it easy for a machine controller to talk to 
machine components such as stepper motors simply by importing and then 
making function calls on their device drivers. Control nodes for various 
discrete components like stepper motors can be plugged into a common bus, 
and Gestalt has built-in provisions for synchronizing the activity of these 
nodes. For example, each of the three stepper motors of Figure 6 can be 
controlled by a separate physical controller, yet Gestalt makes them appear to 
the virtual machine as a single logical 3-axis controller rather than three 1-
axis controllers. The ability to plug individual components into a network 
and have them be treated as a cohesive unit promotes modularity and reuse 
because control boards can be built with finer granularity to support single 
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components that later get combined by the virtual machine to control entire 
tools. In order to convert between motor coordinates and machine 
coordinates, a mechanics library has been created which includes common 
machine kinematics like the differential-drive h-bot, and transmission 
elements such as lead-screws and pulleys. Pre-built machine-level functions 
like “move” allow the machine control builder to rapidly test out their 
creation, and also include more advanced functionality such as accel/decel 
path planning with look-ahead. 
 
The modular approach of Gestalt means that virtual nodes, kinematics, and 
functions can all be shared and reused. In many cases this can significantly 
reduce the amount of work necessary to implement a new machine 
controller. 
 
The Application Designer : Applications provide a task-specific context in 
which a user interacts with a tool. For example, the web-browser-based 
application shown in Figure 7 generates toolpaths for milling circuit boards 
and provides related machine-control functionality like jogging and zeroing 
the tool.  
 

 
Figure 7: A Browser-Based PCB Milling Application 

Gestalt’s approach to machine control makes it easy for applications to 
interface with the virtual machine (and thus the real machine) either by 
importing the virtual machine as a Python module, or by connecting to the 
virtual machine thru a remote procedure call interface. The former modality 
is well-suited for experimentation or algorithmic machine control because the 
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application can call functions on the machine just as you would on any other 
Python method. This approach does away entirely with industry-standard G-
code because function calls are made directly. The remote procedure call 
interface provides a way of converting an HTTP request into a machine 
function call which returns a response encoded in JSON. This enables the 
development of browser-based interfaces to machine tools, as in Figure 7, 
which in turn could open the door to a wide variety of new applications that 
are partially browser-based and partially server-based. An example of this use 
case might be an online repository for storing PCB designs, which is also able 
to directly control a user’s machine. Web-based UIs have the advantage of 
being operating-system independent and written in a language set 
(HTML/CSS/Javascript) that has a shallow learning curve, has prolific online 
support, and has enormous momentum driving its further development. 
 
An additional benefit of the virtual machine approach, not explored by this 
thesis, is the fact that the capabilities of the real machine are exposed via the 
virtual machine to the application. This could enable a new generation of 
toolpath generation software that looks at not only the geometry but also the 
capabilities of the machine when coming up with a strategy for how to 
produce the part. For example, an application might be capable of generating 
toolpaths for a CNC mill and a 3D printer, and would choose between the 
two methods based on the virtual machine provided to it. A less ambitious 
use case is a 3D printer slicing engine that identifies that the work volume of 
the machine is smaller than the size of the part, and thus automatically splits 
the part up into several pieces. 
 
The Tool User : The primary benefit of the virtual machine approach to the 
tool user is that the inner workings of the machine, down to the component 
level, are made open to them. This enables machines to be repurposed for 
new applications by the end user, or allows the end user to learn from the 
construction of existing machines in support of their own machine 
development efforts. In essence, Gestalt allows the tool user to readily assume 
the three other roles mentioned previously. For example, the user becomes an  
application developer simply by importing the virtual machine into a Python 
script. This use case is particularly relevant in cases where the design of an 
object is expressed by its designer in terms of how it is fabricated. A biologist 
might specify a wide range of titrations or a combinatorial matrix of 
solutions. These ‘objects’ are already conceptualized by the biologist as the 
protocol necessary to create them. Thus the easiest way to communicate the 
protocol to a robotic pipette may indeed be via a short script. 
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The Virtual Machine Model 

Nodes 

Gestalt as a framework is built around the notion of virtual nodes controlling 
physical nodes over an interface (Figure 8). Conceptually, this allows real 
hardware to be treated as software objects, conferring all of the benefits of 
object-oriented programming including modularity, reusability, and re-
configurability. 
 

 
Figure 8: Virtual and Physical Nodes 

From the perspective of the hardware designer, the virtual machine approach 
has an additional benefit. Because the virtual node and the physical node 
occupy both ends of the communication channel, the hardware designer has 
complete control over what information is sent over the wire. This enables 
them to perform computationally-intensive calculations in the virtual node, 
preserving compute power on the physical node for time-critical operations. 
 
Four classes of nodes are defined in Gestalt, corresponding to a variety of 
scenarios and connection topologies. 

Solo/Independent Nodes 
 

 
Figure 9: Solo/Independent Node 

The most basic type of virtual node is the solo/independent node (Figure 9), 
and is used when it is necessary to interface pre-existing non-Gestalt 
hardware. The role of the virtual node in this case is to provide an API 
wrapper for whatever API is already provided by the hardware. For example, 
the author has written solo/independent nodes for an industrial inkjet head 
that communicates over a serial interface using an ASCII-based command 
set, and for a KUKA robotic arm that communicates over Ethernet using 
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XML. Solo/Independent nodes cannot be synchronized by Gestalt and thus 
must rely on some other means of synchronizing with external hardware. 

Solo/Gestalt  Nodes 
 

 
Figure 10: Solo/Gestalt Node 

Solo/Gestalt nodes (Figure 10) communicate using a standardized packet 
format and respond to a common set of basic commands. These common 
commands include functionality for resetting the node, loading new 
firmware, and automatically loading a virtual node from a vendor’s website. 
This functionality is provided by a base class on the virtual machine side, and 
by a C library on the physical node side. Because the hardware designer 
creates the virtual node alongside the physical node, they are free to send 
whatever information they want over the communication channel. 
 
Solo/Gestalt nodes typically communicate over a USB (virtual serial port) 
connection although other mediums such as Ethernet or radio are possible. 
Solo/Gestalt nodes cannot be synchronized with each other using the Gestalt 
framework, at least given the presently implemented synchronization 
techniques. 

Networked/Gestalt  Nodes 
 

 
Figure 11: Networked/Gestalt Node 
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Networked/Gestalt nodes (Figure 11) are very similar to Solo/Gestalt nodes, 
except that they communicate on a common bus that enables them to 
conduct synchronized activities. Physically, the nodes are interconnected 
using the FABNET standard that is discussed in more detail in Appendix C. 
Gestalt allows packets to be addressed to individual nodes or to all nodes on 
the network. Synchronization is accomplished by preparing each node for a 
coordinated activity by sending a unique setup packet to each node. A 
‘multicast’ synchronization packet is then addressed to all nodes, signaling 
them to begin at precisely the same time. This method might be called ‘soft’ 
synchronization, and has drawbacks which are discussed later in this section 
and are demonstrated in the ‘Distributed Control of a Fabrication Machine’ 
case study. 
 
Addressing individual nodes requires a means of associating virtual nodes 
with their physical counterparts. The Gestalt Interface class manages the 
routing table that connects virtual and physical nodes, as well as additional 
tasks like queuing commands and generating synchronization packets. 

Managed/Gestalt  Nodes (tentative)  

 
Figure 12: Managed/Gestalt Node 

There are several anticipated problems with the Networked/Gestalt approach, 
stemming from round-trip latency. In order to ensure that all command 
packets have been received by the physical nodes before beginning a 
synchronized activity, it is necessary for them send a confirmation response. 
FABNET communicates using the differential RS-485 standard which is not 
collision-tolerant. Therefore the virtual node must wait for a response to its 
outgoing packet before releasing the interface to the next virtual node waiting 
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to communicate. On the computer systems tested by the author (Mac OS X, 
Linux, and Windows) there is significant latency (~10-20ms best-case) 
between when a response is sent over the wire and when it is received by the 
virtual node. The bandwidth of the network is significantly reduced by this 
latency. For this and other reasons, a different approach is proposed 
(although not yet implemented) in which a network manager communicates 
over a high-speed bi-directional link with the virtual machine, and uses 
additional open-collector network wires shared with the physical nodes to 
identify errors without requiring the call-and-response method. This 
approach also enables hardware synchronization rather than issuing a 
synchronization packet. 
 
It is expected that the Managed/Gestalt method of synchronization will 
enable significantly higher network bandwidth as well as superior 
synchronization. Further details of this proposed approach are given in 
Appendix C. 

Compound Nodes 

 

 
Figure 13: Synchronized Stepper Motor Control via a Compound Node. 

Compound nodes are containers which assist in managing and synchronizing 
sets of related nodes. In the simplest use case, a compound node will pass 
function calls directly on to its child nodes. This is useful for tasks that must 
be performed by all of the nodes, such as loading identical firmware onto 
every stepper driver in a three-axis robot. Compound nodes can also perform 
more complex routing of function calls by splitting parameters to each node. 
The example of Figure 13 shows a set of three stepper driver nodes whose 
virtual nodes have been wrapped in a compound node. Making a function 
call to the compound node:  
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spin((100,200,300),accelSteps=50, decelSteps=50, accelRate=500)  
 
will result in three separate function calls being issued to the child nodes: 
 
spin(100, accelSteps=50, decelSteps=50, accelRate=500) 
spin(200, accelSteps=50, decelSteps=50, accelRate=500) 
spin(300, accelSteps=50, decelSteps=50, accelRate=500) 
 
Thus the compound node behaves externally like its constituent nodes, and 
in the example above could be a drop-in replacement for a single three-axis 
control node. Refer to the synchronization subsection for more information 
on how synchronization is handled internally. 

Machine Functions 

 

 
Figure 14: Machine-Level Functions 

Virtual nodes are concerned only with providing functionality within the 
scope of their physical node. A stepper control node, for example, provides 
methods for spinning a motor rather than moving a machine. This is a 
fundamental difference between the virtual machine approach and that taken 
by the traditional CNC controller where machine configuration is embedded 
in the firmware running within the hardware of the controller. In order to 
begin building virtual machines from modular node elements, functions that 
operate on the entire machine must be provided. These machine-level 
functions need to be imbued with knowledge of the machine configuration, 
need a way of storing machine state (e.g. machine position) and must be 
connected to the nodes which they will control. 
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Virtual Machines 

 
Figure 15: A Virtual Machine for a Generic 3-Axis Mill 

Virtual Machine objects are simply wrappers for the functions, nodes, and 
sometimes interfaces from which virtual machines are built. Additionally they 
contain the state and configuration of the machine (i.e. the machine is 
currently at position (1, 2, 3)). Figure 15 shows a hypothetical virtual 
machine for a generic three-axis milling machine. Each of the three stepper 
motor driver nodes has a corresponding virtual node, which are wrapped in a 
compound node so that machine-level functions can treat the disparate nodes 
as a single virtual node. The spindle driver node also has a virtual node. 
Three functions are exposed to the user of the virtual machine: move() 
instructs the machine to move, disable() turns off power to the stepper 
motors which can be useful in certain machines to permit hand-jogging, and 
setSpindle() controls the speed of the spindle. In a non-hypothetical virtual 
machine, more functions would likely be made available by the machine 
designer. Note that the Gestalt Interface is shown as only partially inside the 
virtual machine. This is because there are cases when several machines might 
share a common bus. In such a situation, a single interface object would be 
passed to multiple virtual machines upon their instantiation. 
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There are several ways of interacting with virtual machines. The first is by 
importing them as modules into a user program. For example, a user could 
write a short program: 
 
import threeAxisMill 
myMill = threeAxisMill.virtualMachine() 
myMill.move([20, 20, 20], velocity = 100) 
 
that would import the machine as a Python module, create an instance of the 
virtual machine, and then instruct the virtual machine – and thru it the real 
machine – to move to a position of (x=20mm, y=20mm, z=20mm) at a 
velocity of 100mm/sec. 
 
Another method of interacting with the virtual machine is via a remote 
procedure call (RPC) interface, which allows a restricted set of function calls 
to be made on the virtual machine by external sources. Two applications of 
the RPC interface have been explored: RPC-over-HTTP (Figure 16), and 
RPC-as-a-file. 

 
Figure 16: RPC-over-HTTP 

RPC over HTTP converts standard HTTP requests into function calls, 
which are then executed on the virtual machine. If values are returned by the 
virtual machine, they are encoded as JSON and sent as a response to the 
initial request. The RPC interface provides a safe way of exposing an API to 
browser-based user interfaces without allowing arbitrary code to be run on 
the user’s computer. When using an RPC-over-HTTP interface, the virtual 
machine could be run as a standalone Python program rather than imported 
as a module. It may become common practice for every virtual machine to 
detect if it is running in standalone mode and, if so, to begin an RPC 
interface. 
 
While RPC-over-HTTP is well-suited for user interface tasks like jogging a 
machine or turning on and off a spindle, the protocol has been found to be 
ill-suited for high-speed transmission of commands as might be encountered 
when 3D surface milling a part. One solution to this problem is to compile a 
long sequence of function calls into a single file, and then to pass them to the 
RPC-as-a-file interface for execution on the machine. Conceptually this 
approach is similar to that taken by G-Code, but function calls serialized as 
text can provide a more open and unrestricted language for controlling 
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machines. The downside of using function calls instead of G-code is that 
standardization is not enforced by the language, meaning that it is up to the 
virtual machine builders to arrive at a standard set of commands for their 
given domain. For example, G-code defines G1 X0 Y1 Z2 to mean “move to 
position (1,2,3)”, whereas each machine builder could hypothetically define a 
different function to perform this same task. The question of how to enforce 
standards to enable interoperability of applications and machines is still open. 
 
  



 43 

Node Architecture 

Nodes constitute the component level of an automated machine, and provide 
via their corresponding virtual nodes an API by which the virtual machine 
can control the hardware of the physical machine. The overarching concept is 
that when a high-level function call is made on a virtual node, a 
corresponding action occurs on the real node. This action might be some 
form of actuation, like spinning a motor, or may trigger the reading of a 
sensor. As was discussed previously, two broad classes of nodes have been 
defined: independent nodes, and Gestalt nodes. Independent nodes are 
hardware devices that have their own proprietary communications protocol. 
To create a virtual node for an independent node is a matter of writing 
wrapper functions for the proprietary protocol. Gestalt nodes are hardware 
controllers which take advantage of the structure and libraries provided by 
the Gestalt framework. It is this structure and these libraries that are the 
subject of this section. 

Service Routines 

Figure 17 illustrates the logical flow of a function call made on a virtual node. 
In this example, the user wants to cause a motor to spin. When a spin() call 
is made on the virtual stepper node, a packet is generated and sent over an 
interface to the physical node. The physical node receives this packet and 
begins stepping the motor. Often the physical node will send a response 
packet to confirm receipt of the command. 

 
Figure 17: A function call on a virtual node. 

In general, the pattern used to communicate between virtual nodes and 
physical nodes is one of service routines. Service routines connect functions in 
the virtual node to functions in the firmware of the physical node. This 
relationship is shown in Figure 18: when a function call is made to a virtual 
node’s service routine, a packet is generated, labeled with a port number 
specific to that service routine, and sent across the communications channel 
to the physical node. It is this port number which causes the receiving Gestalt 
communications machinery to route incoming messages to the corresponding 
service routine on the physical node. 
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Figure 18: Service Routines 

Service routines are typically decoupled from each other, which lends a 
measure of modularity to the programming of nodes. Functionality can be 
added to a node simply by dropping in additional pre-written service 
routines. 

Message Packets 

A standard message packet format has been defined, shown in Table 1, which 
facilitates delivering arbitrary data between service routines on virtual and 
physical nodes, both when the nodes are solo or when multiple nodes are 
connected on the same physical network. 
 

Table 1: The Gestalt Base Packet 

 
 
The first byte of every Gestalt packet is a start byte . This is used both to 
indicate to the receiving nodes that a new packet is starting, as well as to 
identify whether the packet is directed to a specific node or whether it should 
be received by all nodes. The following two address bytes indicate the 
node to which the packet is intended. The port byte, just discussed, directs 
the packet to the attention of a particular service routine within the addressed 
node. A length byte indicates to the receiver machinery how many bytes it 
should expect to receive. Following the length byte is an arbitrary number of 
(but less than 249) payload bytes . The payload is the core of the packet, 
and is used by the service routines to pass messages like how many steps to 
take or the current value of a sensor. The final byte is the checksum byte. 
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This is generated using a cyclic redundancy check (CRC) algorithm which 
aids in detecting whether the packet has become corrupt during transmission. 
 

Physical Node Packet Handling 

When a start byte is received by a physical node, its receiver begins listening 
for the rest of the packet. Simultaneously, a watchdog timer is started that 
will reset the state of the receiver should the next byte never arrive. Once a 
complete packet with a correct checksum has been received, the receiver looks 
at the packet’s start byte. If the start byte indicates that the packet is unicast, 
the receiver checks the address bytes to determine if the packet is intended for 
the node. Should these bytes match, the destination port of the packet is 
examined and the appropriate service routine is called. The service routine 
then pulls the packet’s payload from the receive buffer and acts upon it. If the 
start byte indicates that the packet is multicast, the node calls the appropriate 
service routine irrespective of whether the address bytes in the packet match 
the address of the node. Being able to send packets to multiple nodes 
simultaneously is an important aspect of one of the synchronization 
techniques used by Gestalt to coordinate actions like stepping motors across 
disparate controllers. 
 
When a service routine wants to transmit a response to an incoming packet, 
it fills the node’s transmit buffer with data and then calls the transmit() 
function. This causes a packet to be automatically addressed to the virtual 
node and sent over the interface.  
 
A firmware library has been written in C and provides all of the functionality 
shown in Figure 19 for receiving, transmitting, and routing packets. A 
number of base service routines are also provided for performing 
fundamental functions like loading new firmware and discovering nodes. 
However it is up to the node’s builder to write their own service routines to 
extend the functionality of the base node for their particular task. 
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Figure 19: Physical Node Packet Handling 

 

Virtual Node Packet Handling 

The way in which packets are handled by the virtual machine is slightly more 
complex than the physical nodes because of the one-to-many relationship 
between the virtual machine interface and the physical nodes. One interface 
may host many nodes, as in the case of the networked bus, but each node 
only has one interface. This means that the virtual machine interface is 
responsible for routing packets to the correct virtual node, where they are 
then routed to a service routine. When a packet is received by a virtual 
machine interface, it is first checked for errors. If the packet’s checksum is 
valid, the packet is sent to a separate thread which routes it to the correct 
virtual node based on its address bytes. The address-binding table which 
associates addresses with nodes is a part of the interface because of the one-to-
many relationship discussed earlier. The packet is then sent to the port router 
in the destination virtual node where a port table is consulted to determine 
the proper service routine. Each port is associated with two service routines: 
one outgoing routine, and one incoming routine. When a packet is received 
on a particular port, the associated incoming routine is called. Additionally a 
flag is set which notifies the outgoing routine that a packet has been received. 
This feature is important because often outgoing routines like spin() require 
that the node respond to confirm receipt. The outgoing routine will block 
until the incoming packet flag has been set. Figure 20 illustrates this process. 
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Figure 20: Virtual Node Packet Handling 

Transmission of a packet is more involved, and is thus the subject of its own 
section beginning on the following page. 
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Action Objects 

When a function call is made to a virtual node’s service routine, a packet is 
generated and sent to the matching service routine on a physical node. The 
path between the function call and the packet’s transmission is not 
straightforward, however.  
 
 

 
Figure 21: Action Objects - from Instantiation to Transmission 

Whenever a call is made to a service routine, an action object is instantiated. 
This behavior is a bit surprising, as you might expect a packet to be generated 
and transmitted. Action objects do contain a packet, but also contain the 
logic that generated the packet. It is important that the logic and the 
resulting packet get bundled together because occasionally the packet needs 
to be updated after having been generated. For example, when controlling 
the motion of a milling machine, algorithms are often used to adjust the 
speed of the machine as it moves into sharp corners to limit sudden 
accelerations or decelerations. These algorithms rely on looking ahead a 
certain number of moves to predict when a sharp corner is on the horizon, 
and taking action in advance. In this case, there is a significant lag between 
when a motion packet is first generated and when its final form has been 
decided based on the accel/decal algorithm. Bundling packets with their 
generating logic in an action object allows these updates to be made easily. 
Action objects also permit packets to be synchronized with each other by 
allowing the packets to be updated with synchronization information after 
they have been created. 
 
Action objects have three methods which control their behavior as it relates 
to transmitting a packet: commit(), release(), and channelAccess(). Commit() 
causes the action object to place itself in the interface’s channel priority queue. 
This queue acts as something of a holding pen. Action objects will always 
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leave the queue in the same order in which they arrive (first in first out). 
However, an action object can only leave the channel priority queue when its 
release() method is called. This allows other processes to finish any 
calculations which may update the action object’s packet before releasing it 
and thus giving it permission to transmit its packet. When the release() 
method is called, the action object enters the channel access queue. It is here 
that the action object is waiting for a turn to transmit its packet. When this 
moment arrives, the interface will call the action object’s channelAccess() 
method. This gives the action object access to the communication channel 
for as long as it might need, including an opportunity to transmit several 
times if it does not receive an expected response. When the channelAccess() 
method returns, the next action object waiting in the channel access queue is 
triggered to transmit. This entire process is depicted in Figure 21. 
 
In addition to action objects themselves, there are two containers for action 
objects called action sequences and action sets. These are shown in Figure 22. 
 

 
Figure 22: Action Object Containers 

Action sequences contain a set of action objects that should be executed 
serially. The need for this structure arises when a call to a service routine 
generates more than one action object. For example, a call to spin() requests 
that a motor take 1000 steps. However the packet format between the virtual 
motor controller and the physical motor controller only supports a maximum 
of 255 steps. Thus a single call to spin() requires four packets, and therefore 
four action objects, to transmit the request for 1000 steps to be taken. Action 
sets contain a set of action objects which should be executed simultaneously. 
This occurs when multiple nodes are to be synchronized together. Action sets 
can be composed of action sequences instead of action objects. Both action 
sets and action sequences can be committed to the channel priority queue. 
However, when a release() method is called on these containers, a 
compilation step is performed to serialize their action objects and place these 
in the channel access queue. 
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Figure 23: Serializing Action Sets and Action Sequences 

The serialization of an action sequence is straightforward, as the action 
objects contained within are already in a serial sequence. The process of 
serializing an action set, shown in Figure 23, is a bit trickier. Action sets 
containing action sequences are first sliced across the sequences. In the 
example of Figure 23, the slices would be [A1, B1, C1], [A2, B2, C2], and 
[A3, B3, C3]. Each of the action objects within the set is then synchronized 
with each other. An additional synchronization action object is generated for 
reasons discussed in the following subsection, and the complete set is released 
to the channel access queue. 

Synchronization 

The ability to synchronize the behavior of multiple nodes over a network is 
crucial to realizing a number of the benefits of hardware modularity. There 
are two steps to synchronization. The first is the decomposition of multi-
node actions into individual instructions for each node. This step is discussed 
in the sections preceding this one. The next step is to make these actions 
occur simultaneously on separate controllers. Successfully accomplishing this 
involves having a shared notion of time across all nodes, and a simultaneous 
moment on which all of the actions begin. Appendix A discusses how motion 
commands (and more generally any command) can be decomposed into 
separate node commands that share a common virtual major axis. The virtual 
major axis is simply a common time base on which all actions are timed. The 
final step, synchronizing the start time of each move, is accomplished by 
transmitting individual instructions to each node followed by a multicast 
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‘start now!’ packet that is received by all nodes simultaneously. Because each 
node shares a time base and a start time, their actions will be synchronized 
within the tolerance of the microcontroller’s crystal clock. The overall process 
of synchronizing distributed actions is shown in Figure 24. 

 
Figure 24: Synchronized and Distributed Actions 

As with typical packets, each configuration packet requires a response packet 
to ensure receipt. The synchronization packet does not elicit a response, 
which leaves open the possibility that it gets missed by one node but not 
others. Because a response is required of the configuration packets, 
communications latency becomes a problem. It is possible to buffer 
synchronized moves in the physical nodes, but at the risk of clock drift. A 
further explanation of this phenomenon, and a proposed solution to latency 
issues during synchronized moves, is presented in Appendix C as the 
Managed/Gestalt node type. The need for this conceptual work is 
corroborated in the ‘Distributed Control of a Fabrication Machine’ case 
study, where evidence was found that even for moves with moderate detail, 
latency became a dominating factor in limiting tool speed. 
 

Virtual Node Shell  

Much effort has already been expended describing the inner workings of the 
virtual node object, particularly in the context of communication with its 
physical counterpart. Here we discuss the virtual node in the context of the 
virtual machine. When a virtual node is defined inside a virtual machine, a 
bit of a trick is played. Rather than a virtual node, a virtual node shell is 
created. This shell passes along function calls made on it to a virtual node 
contained inside. When the virtual machine is first started up, the shell is 
filled with a generic virtual node that contains just enough functionality to 
ask its matching physical node for a pointer to the file containing the physical 
node’s specific virtual node. This specific virtual node is then instantiated and 
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swapped with the generic virtual node, thus allowing the virtual machine to 
access all of the unique functions of the physical node. The virtual node shell 
technique is used because all of the machine-level functions need to be 
provided on startup with a reference to a virtual node that does not change 
(else all of the references would need to be changed when the specific virtual 
node is acquired). This approach permits a static shell whose ‘meat’, the 
virtual node, can be swapped at will. Because the shell passes along any 
function calls onto the contained virtual node, the shell is essentially 
transparent. Figure 25 shows the virtual node shell schematically. 

 
Figure 25: Virtual Node Import Internals
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Related Work 

Gestalt sits at the intersection of several established domains, in which there 
exists a large collection of relevant work. This section pulls from academic 
literature, the commercial market, and the DIY community to place Gestalt 
within the greater context of what has been done before. 

Control Frameworks 

Significant work has already been done to enable the rapid creation of control 
systems, both for the industrial manufacturing market and also as a tool for 
academic research. Gestalt touches on both areas because it aims to enable the 
rapid development of automated fabrication tools (as in industrial 
manufacturing), but for an audience and purpose more closely related to 
academia – the intended user is primarily an individual who, like the 
researcher, is seeking to widen the boundaries of their capabilities. 
 
There is quite a bit of interest within the industrial manufacturing arena for 
frameworks that enable rapid creation of control systems for new tools. This 
is driven by demands for specialized and highly automated machinery for 
production, and also by the high cost of developing unique special-purpose 
software to control these machines (Pritschow et al., 2001). The general 
solution converged upon by industry is one of vendor-neutral modularity, 
achieved through a standardization of interfaces at a software level, and is 
commonly referred to as Open Architecture Control (OAC). Several 
frameworks to implement this general concept have been developed, and 
include the Open Systems Environment Consortium (OSEC), the Open 
Modular Architecture Controllers (OMAC) users group, and the Open 
System Architecture for Controls within Automation Systems (OSACA) 
project (Pritschow et al., 2001). 
 
Some of the most relevant work to Gestalt is in this field of industrial tool 
construction, and was conducted by Kevin Oldknow  and Ian Yellowley at 
the University of British Columbia5. They describe an approach which 
enables the ‘dynamic reconfiguration’ of machine tool controllers using a 
virtual machine controlling a physical machine (Oldknow & Yellowley, 
2001). Their system is very similar to Gestalt in many ways. Each hardware 
component, such as a physical motion axis,  is represented to higher-level 
                                                   
5 The author regrets to have only discovered this work after the development of 
Gestalt, as many of the concepts presented by Oldknow and Yellowley are important 
aspects of Gestalt and took significant effort to arrive at independently. It is 
interesting, however, that pursuing the same problem has led to such similar 
solutions.  
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applications as a virtual component. A set of standard object classes ensure 
that these virtual components are interchangeable. This is a feature still 
lacking in Gestalt – while base classes  and standard libraries are used to 
ensure that all nodes contain the basic functionality needed to communicate 
with their physical and virtual counterparts, there is currently no 
enforcement of a standard API that is presented by specific types of virtual 
nodes such as stepper motor control nodes, etc.  
 
Just as Gestalt nodes define their own virtual machine drivers and thus can 
send arbitrary data over the network, in the system created by Oldknow and 
Yellowley, hardware components store within their firmware the drivers 
needed by the virtual machine to talk with them. On start-up, these drivers 
are pushed over the communications bus to the virtual machine where they 
are subsequently used to talk to the hardware from which they were 
downloaded. Gestalt’s approach to node driver acquisition is fundamentally 
the same, although a URL that points to the driver is provided rather than 
the driver itself. One primary difference between the two systems is in the 
implementation of the virtual components. In Gestalt, the virtual nodes 
interface between higher level code (like the virtual machine) and the physical 
hardware. In Oldknow and Yellowley’s system, the virtual component and its 
software-based hardware driver are separated from each other and linked by a 
binding-table. This overall system was later developed into a commercial 
product by Cameleon Controls (Ramin Ardekani, Oldknow, & Yellowley, 
2011). 
 
Several frameworks have been developed for research use that facilitate the 
rapid prototyping of control systems. One such system is produced by 
National Instruments and is called LabView (National Instruments, 2013). 
LabView is a generic framework for building and testing control systems. A 
graphical interface allows users to instantiate a wide variety of modular blocks 
and then connect them to achieve specific functionality. This visual code is 
then compiled and executed in conjuncture with specialized LabView 
interface hardware. For example, the control system for a robotic arm could 
be created by creating individual PID controllers for each motor, and then 
connecting them through a pre-defined kinematics matrix to an input stream 
of XYZ coordinates. Motor amplifiers and sensors would be attached to the 
LabView interface hardware. While LabView is extremely flexible, and in 
terms of functionality is capable of the same things as Gestalt and more, its 
cost and complexity make it ill-suited for our intended audience. 
 
Within the more specific realm of robotics (in which automated tools might 
be viewed as a subset), a number of frameworks exist that help developers 
interface with, and control, systems built from a heterogeneous mix of 
hardware devices. The Robot Operating System (ROS), largely developed by 
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Willow Garage, is an example of an open-source framework for robotics 
research. It provides services such as “hardware abstraction, device drivers, 
libraries, visualizers, message-passing, package management, and more.” 
(Willow Garage, 2013).  Like Gestalt, components are modularized as nodes. 
Nodes communicate using a publisher/subscriber paradigm where any node 
can publish information to a ‘topic’; this information is subsequently received 
by any nodes that subscribe to that topic (ROS, 2013). It is quite likely that 
ROS could be adopted to the more specific tasks of controlling automated 
tools, and the fact that it is open-source puts this prospect in the hands of the 
community. It certainly seems to have many of the desired properties, such as 
the ability to control disparate hardware in real time from a programming 
interface. 

Rapid Prototyping of Personal Fabrication Machines 

Since 2009, an ongoing project at the MIT Center for Bits and Atoms (CBA) 
called ‘Machines That Make’ (MTM) has been developing a complete 
workflow for personal fabrication, from CAD through toolpath generation 
and machine control. Nadya Peek, a current graduate student in the CBA, is 
currently also working on virtual machine control of physical machines over 
distributed networks of nodes (Peek, 2012). In addition, a large number of 
low-cost machines have been built in conjuncture with the MTM project 
including a DIY EDM machine by Ben Peters, a 5-axis desktop milling 
machine by James Coleman, a multi-process lathe capable of 3D printing in 
polar coordinates, by Yoav Sterman, a cast-cement CNC gantry by Kenny 
Cheung, and others (MIT-CBA, 2013). Some of the early work which led to 
Gestalt occurred as part of the MTM project, including some of the first 
versions of the virtual machine controlling a set of networked nodes. 
 
Prior to the MTM project, the first seeds of Gestalt took root as the author 
worked on their senior thesis under the supervision of Professor Gershenfeld. 
This work developed a distributed controller for a small PCB mill that was 
controlled by a virtual machine (Moyer, 2008). 
 
The RepRap project is another example of the rapid construction of personal 
fabrication tools by individuals (Reprap, 2013). The goal of the RepRap 
project is to create a 3D printer design that can self-replicate: the majority of 
the parts needed for the machine can be printed on the machine. The result 
has been a Cambrian explosion of home-made 3D printer varieties (Gilloz, 
2012). 
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Browser-Based Control 

The idea of web-browser based machine tool control was first suggested to 
the author in conversations with Ed Baafi, who is one of the creators of 
Modkit – an online integrated development environment for programming 
microcontrollers (Modkit, 2013). Indeed, the browser-based applications 
shown throughout this thesis are inspired by Modkit’s approach. The Modkit 
user interface is a browser-based application that loads programs onto a 
microcontroller through a small Python application running on the user’s 
computer. 
 

 
Figure 26: Browser-Based Control 

Figure 26 illustrates the concept of browser-based control. A web page 
residing on any server (including the local file system) is visited by a web 
browser. That web page uses the browser to communicate to the tool as 
needed. In the case of Gestalt, this interaction occurs through 
communications between the web browser and the remote procedure call 
interface of the tool’s virtual machine. The virtual  machine may be local to 
the web browser, or may even reside on a separate computer like a Raspberry 
Pi (Raspberry Pi Foundation, 2013). 
 

 
Figure 27: Web-Based Control 

There has additionally been quite a bit of work recently in Internet-
controlled tools. In this scheme, the tool is not local to the browser. 
Frequently, the tool is connected to the same server which provides the user 
with the webpage needed to control the tool (Figure 27). One example of 
this is OctoPrint (Haussge, 2013). Octoprint is a machine interface for 3D 
printers which acts as a web server, publishing its controls in the form of a 
webpage. Users are thus able to control their 3D printer remotely from a web 
browser. The difference in approach between Octoprint and Gestalt is that 
Octoprint publishes the webpage needed to interface with Octoprint. With 
Gestalt, a 3rd party publishes the webpage which controls Gestalt. 
 
It is logical to extend browser-based control into an entire workflow 
including part design, toolpath generation, and machine control. A research 
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group at the University of Berkeley has made large strides in this direction 
with their ‘CyberCut’ system (Smith & Wright, 1996). They present a 
system which includes internet-based CAD, process planning, and toolpath 
generation. Additionally they show how knowledge of the manufacturing 
process can be fed back into the CAD program to prevent the designer from 
creating un-manufacturable geometry. This concept is particularly relevant to 
Gestalt, where rich information on the capabilities of the tool could be made 
available to upstream workflows by the virtual machine. 

Hardware APIs 

One of the primary aspects of Gestalt is that it enables software APIs for 
physical hardware. A number of projects have conducted related work. 
Firmata  is an Arduino library that allows host computers to control an 
arduino using high-level function calls (Firmata, 2013). Moti is a “smart 
motor” which can be networked and which exposes an API that can be 
interfaced with from a web browser (Motiph, 2013). Phidgets is very similar 
to the node layer of Gestalt; a wide variety of commercially available USB-
connected hardware modules can control actuators and read sensors. Each 
module comes with a matching host API that can be called from applications 
written in a wide variety of programming languages including Java, C++, 
LabView, Python, Ruby, and more (Phidgets, 2013).
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Development: Challenges and Solutions 

Gestalt has been in development, in one form or another, for nearly four 
years. Over this period, around eight iterative versions have been created. The 
task of architecting a framework is challenging because above all else the 
framework must be self-consistent. When a new requirement is added, or a 
more elegant way of accomplishing a task is found, the framework may need 
to be redesigned from the ground up to maintain consistency. Just as Gestalt 
is intended to promote a more open design philosophy towards machine 
design, much care has been taken so that Gestalt itself is easily modified. This 
section presents several of the challenges encountered over the course of 
Gestalt’s development, and discusses the solutions that have been adopted. 

Conception 

The idea for a virtual machine controlling a physical machine over a network 
was first suggested to me as the topic for my B.S. thesis by Prof. Neil 
Gershenfeld of the MIT Center for Bits and Atoms. The exploration that 
ensued did not focus on making a framework – at the time the author was 
more interested in understanding how to represent a machine in software. 
Perhaps the first seed of Gestalt came a year later when, as part of the MIT 
class ‘How to Make Something that Makes Almost Anything’ taught by Prof. 
Gershenfeld, the author met Steve Leibman. It was during a discussion with 
him that we realized that rather than machine tools executing G-code, which 
has no extensibility, they would be better off executing Python. We thought 
that this could enable the rapid development of more complex machines by 
allowing their control systems to tap into the functionality of the many 
available Python libraries. The core idea of the user being able to call Python 
functions on the virtual machine has dictated the overall architecture of 
Gestalt. 

Synchronous, Not Real-Time 

The key tension in the design of Gestalt is caused by the fact that the virtual 
machine is connected to the physical machine over an interface with 
significant intrinsic latency. This requires that heavy buffering is utilized on 
the hardware side in order to smooth out periods of high traffic and thus 
increase overall throughput. Yet the use of buffering causes lags in state 
between the virtual machine and the physical machine. Issues further arise 
because of the need for the virtual machine to synchronize the physical nodes 
in spite of this phase lag. One solution might be to make the system real-
time: in such a configuration, the virtual machine would regularly and 
frequently push state to the physical nodes. However this would require both 
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a low-latency interface and also potentially a real-time operating system to 
ensure that the virtual machine was always able to meet its commitments for 
updating the physical nodes. This approach was avoided from the outset 
because of these practical concerns. No good solution to this problem has yet 
been found, but the author wishes to make the reader aware of this tension 
because it explains many of the design choices taken in the internal 
architecture of Gestalt. One example of such a choice is the decision that 
each service routine call generates not only a packet for transmission, but also 
an associated action object. These action objects help mitigate issues of state 
lag between the virtual and physical nodes because they allow commands that 
are currently waiting for execution in the buffers of the physical nodes to 
persist inside the virtual machine until their execution can be confirmed. 
This is useful in the event that state needs to be recovered. For instance, if a 
toolpath is paused by the user, the commands in the physical node buffers 
still have virtual representatives that can be used to determine the machine’s 
actual position. These action objects can also be pushed back onto the 
channel access queue so that the toolpath can be resumed where it was left 
off. 

Virtual Node Acquisition 

One of the early decisions in the development of Gestalt was that the person 
who designs the physical node should also write a matching virtual node. 
This allows the node designer to arbitrarily divide computation between the 
virtual and physical nodes, permitting complex calculations to be written in 
Python and executed on a fast processor while timing-critical operations like 
stepping a motor can be done on the physical node. Arbitrary packet 
payloads can be sent across the network because the node designer owns both 
ends. Additionally, the virtual node provides the machine builder with a 
modular and easy interface for communicating with physical nodes. The 
virtual node / physical node approach raised a few questions, however. One 
question is how does the virtual machine get the Python file containing the 
virtual node that corresponds to the physical node it wishes to control? 
Ideally, the user can plug a physical node into the network and the node 
automatically sends over its virtual node file when it is instantiated by the 
virtual machine. This is the implementation developed by Oldknow and 
Yellowley (Oldknow & Yellowley, 2001). The problem with this approach is 
that current low-cost microcontrollers have a limited amount of memory, 
some of which is already needed to store firmware. The solution that was 
adopted is for the physical node to send, on instantiation, a URL pointing to 
its virtual node file, presumably residing on the node manufacturer’s website. 
The virtual machine then downloads and imports the virtual node file, which 
it subsequently uses to control the physical node. 
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The second challenge associated with acquiring the virtual node relates to the 
chicken-and-egg situation of needing to talk to the physical node before 
having the virtual node needed to talk to it. When the virtual machine 
instantiates a virtual node object, it actually creates a container for a virtual 
node. That container is automatically filled with a base virtual node that 
contains just enough functionality to associate with and get a URL from the 
physical node. As long as the physical node’s firmware was compiled with the 
Gestalt C library, the service routines required by the base virtual node to get 
a URL will be on the physical node. Once the URL is received by the virtual 
machine, the container contents are swapped with the manufacturer-supplied 
virtual node object. 
 
One final challenge with the container approach is that from the perspective 
of the  virtual machine, the container is the virtual node. Thus there needs to 
be a way for the container to act as if it is the virtual node, meaning that any 
function calls made on the container should be forwarded onto the virtual 
node. Fortunately, Python provides the functions __getattr()__ and getattr() 
which do precisely this. 

Node Pairing 

One of the first steps which must occur before a virtual node can talk to a 
physical node is that the two need to be associated together. Imagine a new 
three-axis machine which is being tested for the first time. Each stepper 
motor is its own node on a network. The virtual machine correspondingly 
has three matching virtual stepper nodes. But which virtual node controls 
which physical node? This problem is two-headed. First, each physical node 
needs a unique address to be used in the pairing. Second, each virtual node 
needs to know the address of the physical node which it controls. 
 
The original method for picking unique network addresses was borrowed 
from the Internet Zero project (Gershenfeld & Cohen, 2006), where 
hundreds of nodes requiring unique addresses might exist on the same 
network. His solution was that when each node powered on, it began an 
endless counter loop. The user would press a button on the node to break out 
of the loop, and the value of the counter was stored as the node’s address. 
Because the counter was very large, and because the time at which the button 
press occurred was random, there was a very small likelihood of two nodes 
being assigned the same address.  Early versions of Gestalt then performed 
node association as follows: when a virtual node is instantiated, it sends out a 
multicast request on the network asking which node is its pair. Each physical 
node on the network would begin flashing an LED, and the user would press 
a button on the physical node that should get paired with the virtual node 
currently being instantiated (a message indicating the name of the node 
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would be provided to the user.) The physical node would then reply with a 
message containing both its network address and URL. For example, a 
message would appear in the terminal saying “please identify the X Axis 
virtual node…”. All of the physical nodes would begin blinking, and the user 
would press the button on the X Axis physical node. The X Axis physical 
node would then send a reply containing its randomly-generated address and 
a URL like “http://www.mymanufacturer.com/stepperNode.py”. 
 
The user-provided-randomness approach to generating random numbers 
proved to be tedious as it required an extra button press per node, and still 
left room for address conflicts. The solution that was adopted in this work 
was that on the instantiation of a virtual node, a random address is generated 
by the virtual machine (rather than the physical node) using a random 
number library. This address is checked against a table of previously 
generated addresses within the virtual machine to ensure that there are no 
conflicts. A multicast message is then sent over the network with the 
randomly generated address saying “assign yourself the provided address”. 
Like before, all of the nodes begin to blink, and the user presses a button on 
the correct node to assign it the address. The node then responds with its 
URL. This new approach is particularly important for Solo/Gestalt nodes 
such as an Arduino running Gestalt firmware. The original method of getting 
a network address required a button press, which required that every 
Solo/Gestalt physical node be built with a button. In the case of a more 
productized machine, like the portable CNC platform discussed in the case 
studies, forcing the user to press a button when the first turn on their 
machine would be annoying. In the current approach, the network address is 
pushed to the node. And because the node knows that it is running solo, it 
responds to the multicast request automatically without fear of causing a 
packet collision (as this behavior would cause on a multi-node network). 

Persistence of Node Association 

One issue that became readily apparent while developing control systems 
with multiple nodes was the tediousness of needing to re-associate virtual and 
physical nodes every time that the virtual machine was instantiated. Besides 
being annoying during prototyping, the need to manually associate nodes 
meant that it would be difficult to hand off machines to users who were 
unfamiliar with the machine’s configuration, and would also require access to 
the association pushbuttons on the physical nodes. The solution that has 
been adopted is a persistence file that stores the mapping between virtual 
nodes and the network addresses of their corresponding physical nodes. The 
user assigns names to each node of a virtual machine in the node’s 
initialization arguments. Additionally, a unique name is provided for each 
instance of the virtual machine that shares a common interface. Whenever a 
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node is associated for the first time, its IP address and its user-provided name 
are stored in the persistence file. The node’s name is stored in the format of 
virtualMachineName.virtualNodeName, which allows multiple instances of 
the same virtual machines to share a common network interface without 
resulting in naming conflicts. The next time the virtual machine starts up, it 
first looks for a valid persistence file before beginning a node pairing routine.





 65 

A Continuous Masking Tape Printer 

 

 
 

 

Introduction 

This case study explores using Gestalt to rapidly build proof-of-concept 
machines. We also demonstrate the integration of off-the-shelf devices and 
custom-built electronics within a single Gestalt virtual machine. Additionally, 
a direct function-call interface to the virtual machine is shown. The vehicle 
for these explorations is a printer for decorating masking tape with a non-
repeating pattern. Custom-printed tape is available commercially, but is 
almost always restricted to patterns that repeat regularly. Typical tape 
printing employs the flexographic method, where the tape is continuously fed 
between two rollers. One of these rollers has a flexible stamp affixed to it, 
causing the artwork on the stamp to be transferred to the tape. By the nature 
of the process, the pattern repeats with a frequency equal to the 
circumference of the stamp roller. Thermal label printers can print 
continuous non-repeating patterns, but require expensive tape.  
 
The machine developed in this case study is able to print continuous and 
non-repeating artwork onto adhesive-backed tape such as masking tape. 
Applications include the novelty market where masking tape could be printed 
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with as many digits of Pi will fit, or a sequence of non-repeating jokes. 
Distance measurements could also be printed onto the tape to create a 
disposable and adhesive-backed ‘tape measure’. In this study a series of non-
repeating barcodes were printed on masking tape. 
 
The construction of the tape printer is indicative of the speed with which it 
was built: plywood and 3D printed parts form the bulk of its embodiment. 
The application of Gestalt within this context of rapid development is the 
primary topic explored by this case study. Gestalt is used with Arduino, a 
popular electronics prototyping platform, to quickly assemble a hardware 
controller for precisely feeding the tape. This custom node is then controlled 
in combination with a commercially available industrial inkjet head within a 
virtual machine. Because the printer is intended for printing non-repeating 
patterns, it is expected that an algorithm rather than a static file will serve as 
the basis for generating commands to the machine. A direct function-call 
interface to the printer is demonstrated which enables more seamless 
integration with an algorithmic design generator. 
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Hardware 

 
Figure 28: Tape Printer Hardware 

The hardware of the tape printer, shown in Figure 28, consists of two 
primary systems: the tape drive system and the inkjet head. The purpose of 
the tape drive system is to continuously feed tape at a known rate under the 
inkjet head. The inkjet head, manufactured by Imtech, uses standard HP45 
inkjet cartridges to deposit columns of ink on the tape as the tape passes 
below the inkjet nozzles. The tape begins its journey on an out-feed spool, 
then passes thru a guide roller, under the inkjet nozzle, thru another guide 
roller with an encoder, and finally onto a stepper-motor-driven in-feed spool. 
Most of the mechanical structure of the machine was built using plywood 
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and 3D printed components because these materials and methods are 
conducive to rapid design and construction. 
 
Figure 29 shows in schematic form the interconnection of the various control 
elements of the tape printer. The primary task of the microcontroller is to 
feed the tape at a constant rate. In order to accomplish this, a feedback loop 
is used. Tape speed is measured by an encoder resting in contact with the 
tape just after the inkjet head. This speed is fed into the microcontroller, 
which determines the error between the desired and actual tape speeds and 
adjusts accordingly the rate at which step pulses are sent to the stepper driver. 
Simultaneously, a series of dot column pulses are sent to the inkjet head to 
synchronize the position of the tape with the deposition of ink. These pulses 
are generated directly from the encoder inputs, meaning that printing is tied 
to actual tape speed rather than stepper motor speed. 

 
Figure 29: Tape Printer Hardware Schematic 

Because the drive system is stepper based, the question arises:  “why use a 
separate encoder?” The linear velocity of the tape is directly proportional to 
the spool diameter. However, as tape is spooled up, this diameter changes. 
Rather than needing to estimate the diameter of the spool based on estimates 
of how much tape has been spooled, the tape speed is measured directly with 
the encoder. 
 
A pushbutton is provided to the user so that they can start and stop the 
device. While a software interface could have been provided via the 
controlling virtual machine, the operation of the device is so simple that it 
seemed appropriate to have a single hardware switch. 

Virtual Nodes 

A virtual node was created for each of the physical control elements. The 
Imtech inkjet head speaks over USB using its own proprietary protocol and 
command set. For this reason, a Solo/Independent node was written to 
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interface the inkjet head to the virtual machine. Python functions were 
created to configure the head, clean the nozzles, load print data, and initialize 
printing. In all, around 40 functions were written to wrap the functionality 
of the inkjet head. The biggest challenge encountered in this process was in 
communication. The proprietary protocol encodes all commands as an 
ASCII string, which is tedious to encode on a function-by-function basis. 
Thus a set of helper functions for encoding and decoding the ASCII protocol 
were written as a back-end to all of the command function wrappers. 
 
The firmware for the Arduino-based control node was written using the 
Gestalt C library, which takes care of communications between virtual and 
physical nodes. A number of service routines were created both in the 
firmware of the control board, as well as in the virtual node: 
• enableDrivers() switches on power to the stepper motor. 
• disableDrivers() switches off power to the stepper motor. 
• getSpeed() returns the current speed of the tape based on encoder 

readings. 
• startFeed() sets the target speed of the tape as provided by the virtual 

node, thus causing the feedback loop to spin up the tape. 
• enableSynthesis() enables the output of dot column pulses to the 

inkjet head. When called, this service routine causes printing to 
commence. 

• disableSynthesis() turns off printing by halting the transmission of 
dot column pulses to the inkjet head. 

 

Virtual Machine 

The virtual machine (Figure 30) simply wraps the controller and printer 
virtual nodes, and a few machine-level functions such as waitForTapeSpeed() 
provide higher-level functionality.  
 

 
Figure 30: The Tape Printer Control System 
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The particular function waitForTapeSpeed() polls the getSpeed() service 
routine – requesting the current tape speed – until a target speed is reached. 
The notion of tape speed would nominally only exist at the virtual machine 
level. This is because the control node only knows about the rotational speed 
of the encoder in units of pulses, which are converted by the mechanics of the 
machine into linear velocity. This transformation was not implemented at 
the virtual machine level for this particular case study, but examples of this 
approach are shown in subsequent case studies. 

Application 

The interface to the tape printer was written as a short Python script: 
 
tapePrinter = virtualMachine() 
tapePrinter.initializePrinthead() 
myswath = swath(filename = 'teststrip.bmp') 
tapePrinter.printhead.loadFont('T02', myswath(), 'dotpattern')   
tapePrinter.printhead.sendText(headNumber=1, buffer=0, text="%T02H") 
tapePrinter.setTapeSpeed(400) #set tape speed to 200mm/s  
tapePrinter.waitForTapeSpeed(380) #wait for tape speed to reach 180mm/s 
tapePrinter.machineControl.enableSynthesisRequest(6400, 600, 1) 
 
First, an instance of the tapePrinter virtual machine is created. Then the 
printhead is initialized and an image is loaded. The tape speed is set to ‘400’, 
which is in units of encoder pulses but works out to 200mm/s. (This type of 
calculation would ordinarily occur at the virtual machine level, as is 
demonstrated in subsequent case studies.) It is at this point that the tape 
begins to accelerate to the commanded speed. Once the tape has reached 
close to the command speed, synthesis of dot column pulses is enabled and 
the inkjet head begins to output the image previously loaded into its buffer. 
 
The inkjet head contains a ring buffer into which images are loaded.  In 
order to print continuous non-repeating patterns, the ring buffer must be 
supplied with new images at a rate faster than they are being output onto the 
tape. At the time of writing, this remains untested due to ink drying issues 
which precluded prolonged printing tests. However, because the necessary 
rate of image transfer is directly dependent on tape speed, the open question 
is how fast non-repeating patterns can be printed rather than if they can be 
printed. 
 
The ability to instantiate the virtual machine and then call functions on it is 
essential to feeding it with a continuous stream of non-repeating patterns. 
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Results 

 
Figure 31: Printing Bar Codes on Tape 

The development of the tape printer control system proved to be quite rapid. 
The Imtech printhead virtual node had already been written for a previous 
project, and it was a trivial matter to thus talk to the inkjet head in this new 
application. Writing custom control firmware for the Arduino and creating 
the virtual machine required only around 4 hours of work. Much of this 
speed was owing to the ability to write modular service routines and to reuse 
a few service routines from prior projects. For example, the stepper control 
routine was borrowed from an existing stepper controller node and modified 
slightly. Surprisingly, wiring and mounting all of the electronic components 
including the Arduino and stepper driver took nearly as long as firmware 
development. The algorithmic generation of patterns was not explored 
beyond ensuring that functions could be called directly on the virtual 
machine instance. 
 
While the tape printer was able to successfully print patterns on masking tape 
under the control of a virtual machine, an unexpected technical difficulty was 
encountered. Masking tape, and in fact all adhesive tapes provided without a 
backing, require a coating to prevent the tape from adhering to itself while in 
a spool. This same coating also prevents ink from being absorbed and rapidly 
drying on the back of the tape. As can be seen in Figure 31, ink quickly 
collects on the encoder guide wheel and smudges the image as it passes under 
the wheel. Some possible solutions include increasing the distance between 
the print head nozzles and the encoder wheel, applying warm air to the tape 
to decrease drying time, and/or to use a solvent-based ink that dries much 
faster than standard inkjet ink.  
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Discussion and Conclusions 

One of the first observations when developing the control system for the tape 
printer was how easy it was to get the inkjet head to work immediately, 
owing to the fact that a virtual node had already been written. This 
experience highlighted the utility of Gestalt as a framework for writing and 
sharing modular device drivers, even for pre-existing devices that 
communicate using a proprietary protocol. To the knowledge of the author, a 
unified device driver framework is currently lacking in the DIY community. 
 
The use of the Arduino prototyping platform expedited the construction of 
the tape feed control electronics because it obviated the need for creating a 
custom circuit board on which to house a microcontroller. The Gestalt C 
firmware library allowed the Arduino to be immediately integrated into the 
virtual machine as a virtual node. One useful practice discovered during this 
case study was being able to cut and paste service routines. This was 
particularly helpful for controlling the stepper motor that drives the tape. Just 
as nodes are modular units of functionality within the context of a virtual 
machine, so too are service routines modular units of functionality within the 
context of a node. Therefore it would make sense at some point to develop a 
framework for rapidly building node firmware, perhaps by selecting relevant 
service routines a-la-cart from a menu. An alternate approach, equally 
consistent with Gestalt’s philosophy of modularity, is that each component is 
networked and then their aggregate behavior is coded within the virtual 
machine. In this particular case, where a tight feedback loop exists between 
the stepper motor and the encoder, the need to pass the feedback loop 
through the virtual machine might cause destabilizing loop delays. This 
suggests that future versions of Gestalt should look at ways in which the 
nodes can communicate directly with each other. 
 
While interfacing with the tape printer by importing its virtual machine was 
not fully explored, enough was tested to ensure that function calls could be 
made directly on the machine. This type of interaction is particularly useful 
for classes of machines whose output must be generated algorithmically. Next 
steps include writing code to generate a non-repeating output. The author 
has recently read an article describing a project in which fabric patterns were 
knit using a Twitter feed as the source of the designs (Ciuffo, 2013). This is a 
perfect application for Gestalt because of its ability to be scripted by other 
Python programs. 
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A Personal Jacquard Loom 

 

 

Introduction 

The Jacquard loom was the world’s first automated tool. It therefor felt 
appropriate that one of the first machines controlled by Gestalt should be the 
same. This case study shows how Gestalt can be used to control a fabrication 
machine quite different from the traditional 3-axis automated gantry + 
toolhead paradigm which dominates hobbyist machine-building pursuits, 
and whose motion cannot be described nor controlled by G-code. The rapid 
development of an interactive browser-based user interface is explored, and 
Gestalt’s current shortcomings in supporting interactive control are 
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elucidated. Additionally we demonstrate how the Gestalt C library can be 
used to build firmware running on a custom-designed circuit board. 
 
In ways this project is something of a throwback to the early Jacquard looms. 
Modern looms are fully automated, allowing them to weave many ‘picks’, or 
rows of thread, per second. This loom has been designed for making 
friendship bracelets. In order to preserve the personal touch typically 
associated with these gifts, and also to avoid the technical challenges of 
automating the motion of the weft (transverse) thread, this is a semi-
automated tool. The computer has control over which warp threads are 
lifted, and thus has control over the pattern to be woven. However it is up to 
the weaver to perform the actual task of lifting the warp threads and passing 
the weft. This approach hopes to best match impedances with the user – 
performing the tedious task of selecting threads automatically while giving 
the user control over more craft-like decisions such as thread tension and 
packing of the pattern.  
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Hardware 

Woven textiles are created by passing a transverse weft thread over or under a 
series of warp threads. Which warp threads are up or down as the weft thread 
passes between them determines one row of the overall weave pattern. The 
Jacquard loom developed here automates the process of selecting which 
threads are to be lifted. 
 

 
Figure 32: Control Thread Path 

 
Figure 33: Warp Thread / Control 

Thread Attachment 

 
Figure 34: Weight Box 

 

 
Figure 35: Thread Selection 

 
Figure 36: Knife Lifting Threads 

 
Figure 37: The Shed 

 
Each warp thread is lifted or lowered by a yellow Kevlar control thread. The 
control thread originates at the bottom of a brass flexure, passes thru two 
brass guides, and then passes thru a base plate in the bottom of the machine. 
This path is shown in Figure 32. The warp threads attach to the control 
threads by passing thru small bra hooks connected to the control threads, as 
in Figure 33. The control threads terminate at a weight box (Figure 34) 
underneath the machine, where each thread is attached individually to a 
moveable weight. The purpose of the weight box is to keep the control 
threads taut and thus straight at all times. 
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Thread selection is accomplished magnetically. A series of 24 moveable 
electromagnets, some of which are shown in Figure 35, are used to deflect the 
brass flexures out of the path of a lift knife. Once the electromagnets are 
energized and brought into contact with steel screws at the end of each 
flexure, the sled on which they are mounted is retracted, thus carrying with it 
any flexures whose electromagnets are active. Figure 36 demonstrates how the 
lift knife captures and lifts any flexures that have not been bent out of its 
path. Each lifted flexure causes its corresponding control thread to raise a 
warp thread, to create a shed. The shed, shown in Figure 37, is the area 
between raised and lowered warp threads. It is through the shed that the weft 
thread is passed to create a row of the overall weave pattern. 
 

 
Figure 38: Control of 8 Electromagnets 

Each electromagnet is energized with around 200mA at ~3V to deflect its 
flexure. This power is supplied thru a Darlington transistor which is in turn 
controlled by a shift register. The microcontroller controls which transistors 
are on, and thus which flexures are deflected, by shifting out an entire row 
pattern to a series of three shift registers, each of which controls eight 
electromagnets.  Figure 38 illustrates this control topology. Shift registers are 
used because the microcontroller, an Atmel ATMega328, does not have 
enough available output pins to directly interface with all of the Darlington 
transistors. 
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Figure 39: Jacquard Loom Control Board 

A custom circuit board, shown in Figure 39, was developed to embody the 
control functionality described above. This control board has provisions to 
control and energize 24 coils, using four 7-transistor Darlington arrays 
(ULN2003) and three 8-bit shift registers (74LS164). A microcontroller runs 
custom node firmware built with the Gestalt C library, and an RS-485 
transceiver is provided so that the node can communicate using FABNET. 
Although it is unlikely that additional modules might be used in concert with 
this board, at least for this specific application, the RS-485 interface was 
easier to implement than a USB interface. Also it should be noted that an 
earlier version of FABNET is used, hence the 8-pin connector. After the 
photograph of Figure 39 was taken, small heat sinks were added to the 
Darlington transistor arrays to permit higher coil currents to be used safely. 
 
Additionally, two lever switches are used to sense the positions of the 
electromagnet sled and the lift knife. This information is used by the 
browser-based weaving application to determine when to send new row 
patterns to the loom. The switches are mounted so that they are closed only 
when the electromagnet sled is in the fully retracted position and when the 
lift knife is fully raised. 
 
The custom firmware written for the loom control circuit board takes 
advantage of the Gestalt C library’s provisions for assigning arbitrary pins to 
the network interface. This allows custom PCBs to be designed and used as 
physical nodes. 
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Virtual Nodes 

The loom virtual node is extremely simple. It has only two service routines: 
• shiftOutRequest() sends three bytes of data to the node where 

they are shifted out on the shift registers, thus causing coils 
corresponding to high bits to energize. 

• readSwitchesRequest() queries the status of the lift knife and 
electromagnet sled lever switches. 
 

Figure 40 illustrates schematically the virtual and physical nodes for the 
Jacquard loom. It should be noted that because the control node is connected 
over FABNET, its virtual node is of the ‘Networked/Gestalt’ type. 
 

 
 

Figure 40: Jacquard Loom Virtual/Physical Nodes 

Virtual Machine 

 
Figure 41: The Jacquard Loom Virtual Machine 

The Jacquard loom virtual machine is mostly a wrapper for the virtual node. 
One important role taken by the virtual machine is in exposing the two key 
functions of the machine, sendPattern() and getLoomStatus(), over a remote 
procedure call interface. An HTTP interface was chosen so that the loom 
could be controlled by an interactive browser-based application. 
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Application 

 
Figure 42: Browser-Based Loom Interface [pattern design by Lauren Wright] 

Shown in Figure 42 is the browser-based interface that was built for 
controlling the loom. On the left side is the design tool. The user can click 
and drag their mouse to draw a pattern on a 24-thread-wide swath of fabric. 
Clicking ‘more rows’ increases the available length. For the sake of 
previewing, the warp and weft thread colors can be changed. In this version 
only one weft color is supported, although in future versions it would be nice 
to support multiple colors (and provide prompts to the user as to when to 
switch threads). 
 
The right column of the interface is the loom control panel. Clicking start 
(which was done prior to taking the photo) causes the first row of the pattern 
to be sent to the loom. A black border appears on the design indicating 
which is the current row. The user can manually change the active row by 
clicking the up and down arrows. At this point, weaving can commence! The 
browser interface is regularly querying the virtual node to determine the 
current state of the electro-magnet sled and the lift knife. There are five steps 
to weaving with the Jacquard loom, which are repeated for each row: 
 

1) Touch the flexures with the magnets. When the magnet sled leaves 
the retracted position, the current row is sent to the loom. 

2) Retract the magnets. This causes any flexures with active magnets to 
be deflected out of the plane of the lift knife. 

3) Lift the knife. Any un-deflected flexures will be caught by the knife, 
causing their corresponding warp threads to lift.  
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4) Pass the warp thread thru the resulting shed. 
5) Lower the knife. This closes the shed and completes one cycle of 

weaving. 
 
The browser-based interface is built using a combination of HTML, CSS, 
Javascript, and jQuery. Function calls are made on the virtual machine using 
AJAX requests, and return values (like the status of the switches) are encoded 
in a JSON response. 

Results 

 
Figure 43: A Pattern Woven Using the Jacquard Loom 

The Gestalt C library was successfully used to interface with a 
microcontroller residing on a custom PCB. The computational operations 
needed to control the loom are extremely simple – just shifting out a few 
bytes – and the loom control firmware development benefitted from the 
structure imposed by the service routine approach. This was a case where 
writing custom communications code would have taken longer than writing 
the application itself. 
 
The design application took around a week to write, but largely because the 
author was learning JavaScript and jQuery in parallel with writing the 
application. Progress was significantly assisted by the many online forums on 
these topics. Interfacing with the loom’s remote procedure call interface from 
the application was not difficult because jQuery has good support for 
generating AJAX requests. The loom application has been tested successfully 
on Mac OS X and Linux using multiple web browsers. The only issue with 
the interactive application is the rate at which the loom’s state updates. There 
is a noticeable delay between when user changes the state of the loom and 
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when a new instruction appears in the application. This has on occasion also 
resulted in the user transiting between states faster than the browser could 
respond, thus causing the application’s state machine to become confused. 
 
The Jacquard loom was successfully used in conjuncture with the browser-
based application to produce the swath of fabric shown in Figure 43. 

Discussion and Conclusions 

This case study confirmed that Gestalt can be easily used to rapidly build a 
control system for a somewhat unusual tool. The utility of Gestalt to this 
project was mostly one of communication. The Gestalt C library and virtual 
node base class provided an easy way of quickly talking to firmware running 
on the physical node. Additionally, the drop-in remote procedure call 
interface allowed immediate prototyping of the browser based application. A  
harder to quantify benefit of Gestalt was that it provided a language for 
thinking about how to control the machine. Having a set of templates to fill 
out avoided the feeling of staring at a blank screen, even if the task of coding 
the  loom control from scratch using an Arduino and a Python script (sans 
Gestalt) would not have been too daunting. 
 
Perhaps the biggest lesson came from the development of the user interface 
and weaving application. Unlike most automated equipment, this loom is 
interactive, essentially melding human effort with automation. One of the 
nice things about the browser interface was that instructions for the use of the 
machine could be easily displayed in context as the loom was being used. 
One could imagine a way of likewise capturing user techniques at various 
steps and tagging them to particular actions of the machine. For example, 
techniques for packing the rows of thread or maintaining tension could be 
shown only when relevant. Because the interface is browser-based, and indeed 
served from a 3rd party website (in the example, the website 
www.friendshiploom.com), such crowd-driven features becomes possible.  
 
The issue of latency in the browser-based application reflecting the state of 
the loom is easily fixable by updating the rate at which the loom is polled, 
but brings to light one of the shortcomings of the current Gestalt 
communications scheme. Because the model between virtual and physical 
nodes is one of master-slave, call-and-response, the application must 
constantly be polling the loom. It would be much more efficient for the loom 
to push its state to the browser. There is functionality for this built into 
Gestalt, but issues of bus contention for networked nodes would need to be 
resolved.
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An Automated Coil Winder 

 

Introduction 

One of the major challenges involved in building a personal Jacquard loom 
was creating electromagnets with consistent resistances. The author’s first 
attempt at winding the coils for the electromagnets tediously involved a hand 
drill and yielded results which were inconsistent and ugly. The ugliness was 
not a big issue, but inconsistent coils meant that the maximum coil current 
was limited by the coil with the lowest resistance. These low-resistance coils 
would draw a disproportionate amount of current and overheat at a voltage 
well below what was ideal for the higher-resistance coils. To solve this 
problem, a coil winder was built, and controlled using the Gestalt framework.  
 
This case study addresses the use of Gestalt to automate a specific task facing a 
user – needing to wind 24 coils precisely – by building a quick-and-dirty 
machine, and discusses more generally the crossover point at which it makes 
sense to automate rather than perform by hand. The use of an Arduino and a 
generic stepper driver ‘shield’ further builds on the utility of pre-existing 
nodes to save time in development. Additionally, the Gestalt kinematics 
library demonstrates the control of a machine using radial rather than 
Cartesian coordinates. 
 
In a way, this project is the ideal case-study for the utility of Gestalt. A hard-
to-come-by tool was needed to automate an otherwise tedious manual task, 
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and a working prototype was developed within a couple of days. This is 
precisely the use-case that Gestalt was created for – to enable individuals to 
rapidly build their own tools to satisfy a fabrication need. A good analogy 
might be a person tasked with removing the spaces from the filenames of 
multiple files sitting in a directory. They could manually remove the spaces 
themselves, or they could write a quick script to do the work for them. There 
is a cross-over point at which writing a program takes less time than 
performing the work by hand. The goal of Gestalt is to pull closer the cross-
over point of when it makes sense to build a tool rather than do something 
the hard way. 
 
The coil winder was originally controlled by older hardware and a prior 
version of Gestalt that didn’t support the RPC-HTTP interface. Since then, 
better hardware and a browser-based application for the coil winder have 
been developed. This presentation of the coil winder will demonstrate it in 
conjuncture with the new hardware and control application. 

Hardware 

 
Figure 44: Coil Winder Mechanical Schematic 

Mechanically, the coil winder is built as shown in Figure 44. The core of the 
electromagnet to be wound is held in a chuck and is spun by the spindle 
stepper motor. A carriage, through which passes magnet wire from a spool, is 
moved back and forth in synchrony with the rotation of the spindle. This 
causes wire to be neatly wrapped in a helical coil onto the electromagnet core. 
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Figure 45: Coil Winder Real Hardware 

Figure 45 shows the actual hardware represented by the schematic of Figure 
44. 
 

 
Figure 46: A Stepper Driver Arduino Shield 

After discovering the ease of creating nodes using an Arduino and the Gestalt 
C library while building the tape printer, a generic stepper driver shield was 
built to further explore the use of the Arduino platform coupled with Gestalt 
in prototyping new machines. Shields are add-on modules that plug on top 
of the Arduino, thus expanding its capabilities. Stepper motors are a common 
element in many tools, and indeed many tools, like the coil winder, require 
three or fewer stepper motors. To satisfy the needs of the widest range of 
machines, the shield also has an H-bridge for driving a stepper motor, and a 
servo output for controlling hobby RC servos. The combination of three 
stepper drivers, an H-bridge, and a servo port make the shield suitable for 
many projects including CNC mills. In ways, the concept of a shield goes 
against the modular principles of Gestalt, where each electromechanical 



 86 

component has its own networked control node. However, the shield has 
proven itself useful for rapid prototyping several machines including a large-
format drawing machine currently in development. One additional feature 
that makes the stepper shield well-suited to a rapid prototyping role is that 
the current limits on each stepper driver can be set in software. Current 
limiting is important to achieve maximum performance from a stepper 
motor, and the value of the current limit is highly dependent on the motor 
being used. Typically the process of setting the motor current involves 
calculations to determine the proper reference voltage for a given current, and 
then turning potentiometers while looking at a multi-meter to set the right 
reference voltage. Current limits are set by calling a function on the virtual 
node and providing as arguments the desired current, in amperes, for each 
motor. 

Virtual Nodes 

 
Figure 47: Coil Winder Virtual / Physical Node 

The coil winder is controlled by an Arduino with a triple-stepper driver 
shield which connects to its matching virtual node over the USB interface 
provided by the Arduino. The node supports a number of relevant service 
routines, listed below: 

• setReferenceVoltage() sets the voltage reference for the current 
limiting circuitry on each of the shield’s stepper drivers. A wrapper 
function setMotorCurrents() accepts desired motor currents as 
arguments and handles the conversion between desired current and 
reference voltage. 

• spin() causes the stepper motors to take the requested number of 
steps. If a step command is currently being executed when this 
function is called, the move is queued by the physical node. If the 
queue is full, the service routine waits for a vacancy before returning. 
This service routine is discussed in much greater detail within the 
context of the following case study on the development of a portable 
multi-purpose fabrication machine. 

• spinStatus() queries the current status of the stepping algorithm, 
including the current step position and the number of vacant slots in 
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the buffer. If the buffer is full, spinStatus() is used by the spin() 
service routine to wait for a vacancy. 

• disableMotors() de-energizes all stepper motors. This may be 
called so that the machine can be jogged by hand, and also to prevent 
the motors and/or drivers from getting hot while idle. Of course, 
once the motor drivers have been disabled, the position of the 
machine is no longer known. It should be noted that there is no 
enableMotors() service routine. This is because the motors are 
automatically enabled whenever a spin command is received and 
before motion commences. 

Virtual Machine 

 
Figure 48: Coil Winder Virtual Machine 

 

 
Figure 49: Coil Winder Kinematics 

 
The virtual node sees the world in terms of steps. It has no conception of the 
mechanisms to which its motors are attached. One of the roles of the virtual 
machine is to assist in translating between machine coordinates and motor 
coordinates. To this end, the coil winder virtual machine (shown in Figure 
48) incorporates a few elements which have not yet been demonstrated in the 
prior case studies. A position object keeps track of machine’s position in units 
of revolutions for the spindle and millimeters for the carriage. Figure 49 
shows the way in which these units are converted into steps. Each axis is 
assigned a chain of mechanical elements which transform motion from one 
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set of units to another. For example, the carriage translates linear position (in 
mm) thru a pulley into revolutions, and then thru a stepper motor into steps. 
A similar transformation is done to the spindle rotation to convert between 
revolutions and steps.  
 
An additional block at the end of each chain converts steps into microsteps. 
Many stepper motor drivers perform microstepping, meaning that they are 
able to control the relative currents in each phase of the stepper motor in an 
attempt to interpolate the position of the motor’s rotor. Microstepping has 
two advantages: it allows for higher positioning resolution, and it smooths 
the motion of the stepper motor at slow speeds. The stepper drivers used by 
the triple stepper shield perform 1/16 stepping. However, the physical node 
accepts step commands in units of ¼ steps, and multiplies the commands by 
a factor of 4 once they are received to convert to units of 1/16 steps. This is 
done to achieve smooth motion at slow speeds, while admitting that the 
positional interpolation is likely not accurate beyond ¼ steps. 
 
The final task in calculating the number of steps to take on each motor is to 
pass the results of the mechanical chains thru a transformation matrix. In the 
case of the coil winder the matrix is an identity matrix and has no effect. 
However, the upcoming case study will demonstrate an occasion when this 
transformation matrix is useful. 
 
The move() function within the virtual machine accepts movement 
commands in machine units (mm and rev), and, using the kinematics just 
described, calculates the number of steps required to perform that move. The 
move function then passes these step values to the virtual node’s spin() 
function to cause the motion to occur on the real machine. There is 
additionally a jog() function which accepts relative positions rather than 
absolute machine positions. This is can be useful to an application which 
provides the user with jog buttons. 
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Application 

 
Figure 50: Browser-Based Coil Winding Application 

A browser-based application was made to control the coil winder. The user 
enters a few parameters describing the coil they want to wind, like the wire 
diameter, length of the coil, and number of wraps. From these parameters, 
the application can calculate the pitch of the wire helix and thus can generate 
move commands that it calls on the coil winder’s virtual machine via a 
remote procedure call interface. Buttons are provided for jogging the 
machine, as well as beginning the coil winding operation in either direction. 
An ‘off’ button will cut power to the motors so that the machine can be 
manipulated manually. Finally, a digital readout and corresponding ‘zero’ 
buttons allow the user to both know the position of the machine and set its 
origin. 
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Results 

 
Figure 51: An array of electromagnets for a personal Jacquard loom, wound by hand. 

 
Figure 52: An array of electromagnets wound using the coil winder. 

The coil winder was indeed able to produce electromagnets that were far 
more consistent (and slightly better looking) than those wound by hand. 
Figure 51 shows an array of electromagnets that were wound by hand using a 
power drill. Notice that the diameters of the hand-wound coils are not only 
inconsistent, but the shape is asymmetrical. The same coils were re-wound 
using the coil winder with far better results as shown in Figure 52. The 
overall variation in resistance of the hand-wound coils was around 10%, 
whereas the variation of the machine-wound coils was only a few percent. 
 
Winding coils by hand took on average about 10 minutes per coil because 
frequently the coil would need to be restarted to correct gross errors. The 
coil-winding machine was able to wind a coil in 3 minutes (including loading 
and unloading). Over the course of 24 coils, the total time savings of using 
the machine was therefore just under 3 hours. It took roughly two full days 
to design and build the coil winder; this included predominantly 
constructing the mechanical hardware, and also the time needed to build a 
virtual machine using Gestalt. Indeed, building the virtual machine controller 
for the coil winder was nearly trivial. Pre-existing stepper controllers and their 
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virtual nodes were utilized, meaning that all that needed to be written was the 
kinematics describing the spindle and carriage mechanical chains. 
 
The cross-over point where it would have made sense to build the coil winder 
– strictly from a time-savings perspective and ignoring quality differences – 
would be at around 140 coils. This assumes that the coil winder saves 7 
minutes per coil, but does not take into account any improvements in 
manual technique and the resulting increase in efficiency which would almost 
certainly develop over the course of winding 140 coils. 
 
 

 
Figure 53: An electromagnet for a personal Jacquard loom wound using the coil winder. 

 
Figure 54: A more typical output from the coil winder. 

 
Figure 53 shows one of the best coils wound by the coil winder. Producing 
coils this consistent was atypical, however. A more usual result is shown in 
Figure 54. While the windings of this latter coil are not perfectly placed, the 
coil is still symmetric (which cannot be said for the hand-wound coils). There 
appears to be a cumulative effect to any errors in wire placement; a small 
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mistake made early on can make the difference between a perfect coil like in 
Figure 53 and an OK coil like in Figure 54. Potential sources of error include 
the motion of the machine being slightly different than the ideal pitch of the 
coil, incorrect tension in the wire (which is presently uncontrolled), and an 
incorrect estimation of the coil length. 

Discussion and Conclusions 

The value proposition of the coil winder is both its ability to produce coils 
that are more consistent than what could be produced by hand, and also to 
increase the speed of the process. It is tough to evaluate whether it made 
sense or not to build the coil winder for the specific situation outlined here 
because the time needed to hand-wind coils of equal quality is unknown. 
However it has become clear that with the use of a controls framework like 
Gestalt, the time needed to build even simple tools such as this coil winder is 
disproportionately biased towards the mechanical hardware. This suggests 
that in order to fully achieve the initial goal of Gestalt, which is to enable 
individuals to rapidly built their own automated tools, perhaps a mechanical 
framework for rapid development is now needed. 
 
The use of a pre-built Arduino shield – essentially a daughterboard for the 
Arduino – made control of the coil winder strictly a programming exercise. 
This is in contrast with the tape printer case study where as much time was 
spent wiring as developing the control system. In that example, there was no 
shield available that contained all of the functionality needed for the tape 
printer. While pre-built shields clearly save time, they can also be restrictive. 
It is for this reason that Gestalt is designed to support control of multiple 
modular nodes across a network, which is explored in the case study 
‘Distributed Control of a Fabrication Machine’.  



A Portable Multi-Purpose CNC Machine 

 

 

Introduction 

This case study examines Gestalt from the (simulated) perspective of a 
company developing a fabrication tool as a commercial product. The benefits 
of the framework to both the developer and to the tool’s end user are 
explored, including questions like ‘how does the framework support a 
complete user experience?’ Additionally, Gestalt’s ability to promote 3rd party 
extensibility of a platform product like the multi-purpose tool shown here is 
tested. Through this study we show the  application of Gestalt to a workflow 
including both toolpath generation and machine control.  
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In order to explore these topics we have developed a portable automated XYZ 
motion platform that accepts interchangeable toolheads to perform a wide 
variety of tasks. Philosophically, this machine is much closer to being a 
product than those presented in the prior case studies. Its design is based 
around a novel machine configuration which makes efficient use of materials 
and is easily producible. A custom circuit board was designed that is 
specifically tailored to the machine’s form factor, and includes all of the 
functionality needed to control the various electro-mechanical elements of 
the machine such as stepper motors and external toolheads. Within the 
context of the development of Gestalt, this machine serves two purposes. The 
first is that it has been a perfect platform on which to develop much of 
Gestalt’s Cartesian motion functionality, including a look-ahead path 
planning algorithm. Additionally, this machine helps answer the question of 
whether a flexible framework like Gestalt – originally intended for the rapid 
prototyping of machines – is also suitable for use in a commercial product. 
This question is important because it would be beneficial if the same 
framework used to prototype new machines could provide continuity thru 
their transition into production. To explore both this and questions 
regarding user experience, a complete browser-based application was 
developed for producing circuit boards using the machine.  
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Figure 55: PCB Mill (2008) 

 
Figure 56: MTM Multifab (2010) 

 
Figure 57: PopFab (2012) 

 
Figure 58: PopFab Vinyl Cutter 

 
Figure 59: PopFab Milling Spindle 

 
Figure 60: PopFab 3D Printer 

 
The machine presented here is the latest point along a trajectory which 
started with the author’s senior thesis in 2008, where they built the small mill 
shown in Figure 55 for routing circuit boards. The realization soon came that 
many fabrication tools, such as milling machines, 3D printers, and laser 
cutters, all have similar XYZ kinematics. This lead to the development of the 
MTM Multifab (Figure 56) with Maxim Lobovsky in 2010 as part of the 
MIT Center for Bits and Atoms (CBA) Machines That Make project. The 
Multifab is a multi-purpose XYZ positioner that accepts a variety of different 
toolheads including a vinyl cutting knife attachment, a spindle for milling, 
and a 3D print head. Subsequent work was conducted with Nadya Peek of 
the MIT CBA to apply the multi-tool philosophy of the Multifab to a 
portable machine. The result, shown in Figure 57, is a briefcase multi-
purpose personal fabricator called PopFab. A variety of the Multifab 
toolheads were rebuilt for the PopFab. These are shown in Figure 58, Figure 
59, and Figure 60. 
 
In the tradition of naming machines, the portable automated multi-tool 
described by this case study is called the Magic Mill. The name is a bit 
misleading, since the tool is capable of more than just milling.  
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Hardware 

 

 
Figure 61: Overview of the Magic Mill Mechanical Structure 

The Magic Mill is a small and portable XYZ positioning stage with a working 
volume of roughly 100x150x60mm (4x6x2.5in) and a nominal positioning 
resolution of around 0.05mm (0.002”). This makes it appropriate for a wide 
variety of detailed work on small parts, including drawing, milling circuit 
boards, making wax molds, cutting vinyl with a drag knife, and small 3D 
printing jobs. An interchangeable toolhead system delivers power and 
communications to the toolhead mount, permitting the future development 
of active toolheads (like what would be needed to support 3D printing). 
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Figure 62: Magic Mill Kinematics 

The Magic Mill has somewhat unconventional kinematics that are shown 
schematically in Figure 62. The X and Z are serially stacked in the sense that 
the X axis rides on the Z axis. The Y axis is a removable pallet. 
 

 
Figure 63: H-Bot Kinematics 

The X and the Z axis are controlled by two stationary motors mounted in the 
XZ plane. A timing belt wraps around a series of 8 pulleys in a configuration 
known as an H-bot (Sollmann, Jouaneh, & Lavender, 2010).The rotation of 
motors A and B in Figure 63 are coupled together through the belt to result 
in X and Y motion. This type of drive might be termed a differential drive. 
The sum of the motor rotations results in X axis motion, and the difference 
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results in Y axis motion. The kinematic equations for the stage thus are given 
by equations 1, 2, 3, and 4: 
 

Δ𝑋 =
1
2 (Δ𝐴 + Δ𝐵) 

(1) 

Δ𝑌 =
1
2 (Δ𝐴 − Δ𝐵) 

(2) 

ΔA =   ΔX+ ΔY (3) 

ΔB =   ΔX−   ΔY (4) 

 
Despite the slight control complexity of the h-bot, there are several 
advantages to configuring the stage in this way.  
Both motors are stationary, resulting in a far lower stage inertia than in a 
typical serial configuration where one motor must move the mass of the 
other.  
 

 
Figure 64: Belt Tensioning 

 
Figure 65: Nested Fabrication 

Because the motors are both mounted in the same plane as the belt, the 
timing belt can be tensioned simply by sliding the stepper motors within a 
series of mounting slots (Figure 64). Setting belt tension typically requires 
adding complexity to the design, with some sort of moving idler pulley or 
additional tensioning mechanisms. The Magic Mill design removes the need 
for this extra detail. One additional benefit of the h-bot configuration is that 
it affords a very simple planar structural design. As can be seen in Figure 65, 
the five primary structural components of the Magic Mill have been designed 
so that they nest together during manufacture to conserve material. All of the 
components are waterjet-cut from 3/16” thick aluminum, and when nested 
occupy a footprint of around 9½” square. The X and Z axes use a system of 
precision ground shafts and brass bushings to guide and constrain their 
motion. These components are very cheap, but their use is fraught with risk. 
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Binding of the sliding carriage will occur if the distance between the bushings 
is not exactly the same as the distance between the shafts. A similar outcome 
results if the guide shafts are slightly misaligned relative to each other, 
because the distance between the shafts thus changes with the position of the 
carriage. One solution is for some of the bushings to be given compliance so 
that they can adapt to the distance between the shafts. This approach solves 
the manufacturing problem of mounting the bushings with exactly the same 
separation as the shafts, and also accommodates misalignment of the shafts. 
However, adding compliance to the bushings poses challenges of its own and 
adds complexity to the design of the axis. The solution to the problem of 
alignment adopted by the Magic Mill is simple. The two guide shafts of each 
axis are held parallel to each other by laser-cut yokes – one at each end – 
which also fix the shafts to the aluminum frame of the machine (Figure 66). 
 

 
Figure 66: Schematic of X and Z Axis Guide System 

 
Figure 67: A set of yokes keeps the guide 

shafts parallel. 

 
Figure 68: Bushings are epoxied to the 

sliding plates. 

It turns out that the laser cutter (or at least the two tested, both produced by 
Universal Laser Systems) produces repeatable enough yokes (Figure 67) that 
the shafts are held  within the necessary tolerances of the strategy. In order to 
set the distances of the brass bushings to be exactly the same as the shafts, an 
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approach is borrowed from David Carr’s MTM Mantis (Carr, 2010): the axis 
is assembled, and the bushings are epoxied to the carriage. This has the effect 
of copying the separation of the shafts to the bushings, rather than trying to 
set both independently and hope that they are nearly identical.  Time will tell 
whether the epoxy used, Loctite E-120HP, has both the strength and 
durability desired for this application. Several stages have been built using 
this technique and have logged many hours of use each without a single 
failure. Figure 68 shows an epoxy joint on one of the Z axis bushings. 
In typical desktop-sized tools, the user needs to fixture their material within 
the confined quarters of the machine’s frame. Perhaps more problematic is 
that when material needs to be removed post-fabrication, it is not 
uncommon for damage to occur. The author has observed on several 
occasions end-mills being broken because the user lifted up too forcefully on 
a milled circuit board that is taped down to the table of a machine, causing 
the tape to suddenly release and send the finished board flying into the 
delicate tool. The Y axis of the Magic Mill is removable, which facilitates the 
fixturing and defixturing of material outside the machine and also makes the 
machine more compact when in storage or during transportation. 
 
 

 
Figure 69: Removable Pallet 

 
Figure 70: Pallet Preload Mechanism 

The pallet, shown in Figure 69, is currently constructed of acrylic with a 
laser-cut grid pattern on its undersurface. The pallet is guided by four V-
rollers, two on each side. Corresponding V-grooves are machined into the 
sides of the pallet. The rollers on one side are mounted on flexures (Figure 
70) which preloads the pallet against the fixed rollers on the opposite side. 
Controlled motion of the pallet in the Y axis is provided by a rack potted into 
the pallet and a pinion gear mounted to a stepper motor on the machine. 
There are a few remaining issues with the Y axis drive system. There is a 
slight amount of backlash in the rack and pinion interface. Additionally, the 
contact force of the gears counteracts some of the preloading of the stage. 
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The compliance built into two of the rollers and the asymmetric location of 
the rack and pinion raise concerns for 3D printing, where large inertial forces 
may cause the Y axis to skew. Another concern is that acrylic is not a good 
material choice for the pallet because of the high contact pressures at the V 
rollers. If this machine is ever mass-produced, it would make sense to use a 
harder and tougher material such as aluminum. 

 
Figure 71: The Magic Mill Control PCB 

A custom circuit board was developed for the Magic Mill than incorporates 
circuitry for the control of three stepper motors, an RC servo, and an 
arbitrary switchable load such as a DC motor. The machine interfaces with 
the computer, and thus its virtual machine, over a USB port. Power is 
supplied through a 2.5mm barrel jack. Currently a 24V power supply is 
being used. Additionally, a FABNET port enables additional nodes to extend 
the control system. The FABNET header on the PCB is brought up to a 
connector on the front of the machine where it can be connected to by active 
toolheads. A set of digital potentiometers allows the current limits to be set in 
software for each of the stepper motors. Generally this is useful for quickly 
supporting a wide variety of motors as might be encountered in a machine 
prototyping situation (as demonstrated on the control board described in the 
coil winder case study). The intended use for the Magic Mill, however, is for 
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homing. Rather than using limit switches to home the machine, the motor 
currents can be reduced and the X and Z axes can be brought against the 
limits of their travel. This homing approach has yet to be tested. 
 

 
Figure 72: Magic Mill PCB Mounted to 

the Y Axis Guide Mount Plate 

 
Figure 73: The XZ Stage 

 
Figure 74: Wiring Up the Motors 

 
Figure 75: Electronics Housing 

The control board for the machine is mounted upside-down on the 
undersurface of the Y axis guide mount plate as in Figure 72. This assembly 
is then mounted to the XZ stage (Figure 73), and the motors are connected 
to the control board (Figure 74). The 3D printed enclosure of Figure 75 then 
enshrouds the electronics. One of the nice features of the machine’s 
mechanical architecture is that not only are all of the motors stationary, but 
they all reside at the bottom of the machine. This makes it very easy to route 
their wiring. Because the PCB is mounted upside down, a fan is provided to 
increase convective heat transfer off of the stepper driver ICs’ heatsinks. 
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Figure 76: Power and USB Connections 

Power and USB connections are made on the back of the machine, as shown 
in Figure 76. 
 

 
Figure 77: Drawing Tool Head 

 
Figure 78: Milling Spindle 

 
Figure 79: Spindle Attachment to 

the FABNET Port 

To date, two tool heads have been developed for the Magic Mill. The pen 
attachment in Figure 77 is useful for drawing pictures, besides being handy 
for debugging control code. A high speed spindle has also been built (Figure 
78), based on an earlier design by the author. Figure 79 shows how the 
spindle attaches to the accessory FABNET port on the side of the machine. 
Power to the FABNET port is currently wired thru the PWM output on the 
Magic Mill PCB, and a MOSFET on this board currently controls the 
spindle. Eventually the spindle could have its own dedicated PCB controlled 
as an additional Gestalt node over the FABNET interface. Unfortunately, 
despite weeks of concentrated debugging, the spindle is still not functional. 
There is an electrical issue which causes the microcontroller to freeze, reset, 
and occasionally have its memory wiped when the spindle turns on. The 
problem has been isolated to electrical noise, and a rerouted PCB is currently 
in the works which does a better job of isolating the spindle ground from the 
microcontroller ground. Perhaps putting the spindle intelligence and control 
on the tool head would fix this problem. 
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Figure 80: And It Travels... 

Finally, some effort has been put into exploring how easily the machine 
travels. Figure 80 shows that the Magic Mill stores comfortably with its 
power supply and USB cable inside an HPRC 2400F hard case.  

Virtual Nodes 

Because all of the functionality of the Magic Mill’s control system is co-
located on one PCB, it is represented by a single virtual node. 

 
Figure 81: Magic Mill Virtual Node 

The service routines of the Magic Mill virtual node are almost identical to 
those of the coil winder described in the previous case study. The 
descriptions of the Magic Mill virtual node’s service routines are listed here: 

• setReferenceVoltage() sets the voltage reference for the current 
limiting circuitry on each of the control board’s stepper drivers. A 
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wrapper function setMotorCurrents() accepts desired motor 
currents as arguments and handles the conversion between desired 
current and reference voltage. 

• spin() causes the stepper motors to take the requested number of 
steps. If a step command is currently being executed when this 
function is called, the move is queued by the physical node. If the 
queue is full, the service routine waits for a vacancy before returning.  

• spinStatus() queries the current status of the stepping algorithm, 
including the current step position and the number of vacant slots in 
the buffer. If the buffer is full, spinStatus() is used by the spin() 
service routine to wait for a vacancy. 

• disableMotors() de-energizes all stepper motors. This may be 
called so that the machine can be jogged by hand, and also to prevent 
the motors and/or drivers from getting hot while idle. Of course, 
once the motor drivers have been disabled, the position of the 
machine is no longer known. It should be noted that there is no 
enableMotors() service routine. This is because the motors are 
automatically enabled whenever a spin command is received and 
before motion commences. 

• pwmRequest() accepts a value ranging from 0 to 1, and sets the 
physical node’s PWM output to this value scaled by a factor of 255. 
This service routine is used by the virtual machine to turn on and off 
the spindle. 

 
The spin() service routine is perhaps the most complex of the service 
routines yet written. It is used to command the physical machine to take 
steps, and also controls the velocity of the resulting moves. Table 2 shows the 
packet format that spin() uses to communicate between the virtual and 
physical nodes. 

Table 2: Spin() Packet Format 

 
Spin() uses a variant of the Bresenham line drawing algorithm, discussed in 
detail in Appendix A, to synchronize the three stepper motors. It should be 
noted that only one byte is allocated to represent the number of steps to take 
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in each axis. This helps to reduce the size of the packet at the cost of needing 
to send multiple packets to represent longer moves. However, because 
network bandwidth is only an issue for brief moves consisting of few steps, it 
makes sense to reduce the packet size so that packet transmission is optimized 
for the bandwidth-limiting case of short moves. The last three bytes of the 
packet are dedicated to setting the profile of the stepping speed. The stepping 
speed is not set directly. Rather, it is set by providing an acceleration rate and 
a number of steps over which to accelerate or decelerate. 

 
Figure 82: Spin() Velocity Profile 

Figure 82 illustrates how the acceleration rate is integrated over the course of 
a given number of steps to control the stepping speed. It is important for 
high-speed motion that the step generator is able to accelerate and decelerate 
the machine rather than starting full-tilt. A path planner is built into the 
virtual machine’s move function, which decomposes velocity profiles into the 
format described above. This representation of velocity was chosen because it 
both minimizes the difficulty of, and hence compute time to perform, the 
acceleration calculations on the physical node. Additionally it minimizes the 
packet size. This approach has drawbacks, however. One is that not all 
requested velocities can be achieved, because the velocity is parameterized 
non-linearly in terms of number of steps (which is a discrete quantity). There 
is also the risk of velocity drift because of rounding errors either in the 
physical node or in the path planner. Finally, there is a lock-up condition 
which can happen upon deceleration. If the velocity hits zero before the last 
step is taken, the node becomes unable to complete the current move and 
becomes frozen. Several solutions to this last problem are possible, including: 

• Never operating at a zero stepping velocity. Acceleration can begin 
from and end at a greater-than-zero minimum speed, which is 
feasible so long as the stepper motor can accelerate to the minimum 
speed over the course of a single step. 

• Detect the lock-up condition in the physical node and continue 
stepping at a pre-set minimum speed before dropping the velocity to 
zero after the move is over. 
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The acceleration algorithm is still being optimized and debugged as of this 
writing but is functional. Unfortunately, round-trip latency between the 
physical and virtual nodes prevents the machine from operating at a speed 
commensurate to the utility of using an acceleration profile. 

Virtual Machine 

 

 
Figure 83: Magic Mill Virtual Machine 

The Magic Mill virtual machine, shown schematically in Figure 83, contains 
the control board’s virtual node, a position state object, kinematics for 
transforming between motor units of microsteps (as used by the spin object) 
to millimeters and back, remote procedure call interfaces for receiving 
commands both over HTTP and as a file, and several machine-level 
functions. The position state object is used for storing the current position of 
the machine, and is modified by the move() function. However it should be 
noted that because motion commands are queued at both the virtual machine 
and the physical node, the position object’s value typically leads the actual 
position of the machine. For this reason, the position object has two 
parameters:  ‘future’ and ‘current’. ‘Future’ stores the pending position of the 
machine once all of the queued moves have been processed, and ‘current’ is 
intended to store the estimated position of the machine. However this feature 
has not yet been fully implemented.  
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Figure 84: Magic Mill Kinematics 

 
The kinematics of the Magic Mill are depicted in Figure 84. Each motor has 
a mechanical chain which starts as microsteps at the virtual node, are 
converted to steps at the motor driver, then revolutions by the motor, and 
finally millimeters by either the pulley or rack and pinion. It should be noted 
that the first mechanical element chain in Figure 84 drives the Y axis, but a 
‘pulley’ element is used rather than a gear. Pulleys are mathematically 
identical to the rack and pinion drive in that they transform from rotation to 
translation, whereas the gear element in the Gestalt mechanics library only 
scales rotations. A kinematics matrix is then used to transform linear 
displacement at the motors into motion of the machine, according to the 
equations given for the h-bot kinematics in the introduction to this case 
study. This final kinematics matrix for the machine is a compound matrix 
formed by placing a 1x1 identity matrix on a diagonal with the 2x2 h-bot 
matrix. Finally, a ‘routing’ element is used to handle the sticky situation that 
the B and C motors drive the non-adjacent (in matrix space) X and Z axes. 
One 3x3 matrix could have been substituted for the two kinematics matrices 
and the routing element, but then modularity would have been lost because 
each 3-axis machine which uses an h-bot would need to write their own 
transformation matrices. 
 
A number of machine-level functions are included, which provide the user 
application with the necessary interface to control the machine. Functions 
like getPosition() and setPosition() are used by the application to display the 
current machine position and to zero the tool. setSpindleSpeed() is used to 
turn on and off the motor, but due to the noise issues previously discussed, 
this function has gotten little use as of late. The most complex of the 
functions is move(). Move() takes parameters including the requested 
absolute machine position and a desired velocity. A move object is 
consequently generated, which is fed into a look-ahead path planner to 
calculate a suitable acceleration and deceleration profile for the machine. The 
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path planner queues up to 50 moves in a first in-first-out buffer; each time a 
new move is received, the planner looks at all of the pending moves and 
attempts to accelerate the machine to the desired speed under maximum 
acceleration constraints. For example, if a series of short, nearly collinear 
moves terminate in a sharp change of direction followed by additional moves, 
the path planner might begin decelerating many moves before the corner is 
hit, so that the sudden change in direction does not overload the motors. The 
jog() function simply wraps the move function to provide relative 
positioning, which is useful for applications which have jog buttons. 
 
The final element of the virtual machine is the remote procedure call (RPC) 
interface. Both an HTTP interface is provided for interactive control of the 
machine via a browser based app, and a file-based interface is provided for 
processing long motion paths. To restate other parts of this document, the 
RPC-over-HTTP converts an HTTP request into a function call, and issues a 
response containing the return values of those function calls in the form of a 
JSON dictionary. The RPC-as-a-file interface accepts a text file containing a 
long list of function calls, and sequentially makes those function calls on the 
virtual machine. This method is superior to the RPC-over-HTTP interface 
for generating long chains of commands, as is common when executing a 
toolpath on the machine. Both interfaces are used by the PCB milling 
application, which was developed for this case study, to provide interactive 
and scripted control of the machine. 
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Application 

 
Figure 85: Screenshot of Browser-Based PCB Milling Application 

Magic Mill is intended to simulate a commercial product. One use case that 
was explored is the idea that someone might control their tool from a website 
developed by a 3rd party. This makes particular sense for a multi-purpose tool 
that can assume many different uses depending on which toolhead is 
attached. Within the context of PCB milling, the 3rd party source of the 
application might be the toolhead developer, or perhaps someone who sells 
PCB making materials, or maybe a board house that wants to convert tool 
users into customers when it comes time to place production orders. The idea 
of controlling a tool from within a web browser originated in conversations 
that the author had had with Ed Baafi, the founder of ModKit (Modkit, 
2013). ModKit is a browser-based programming application for the Arduino 
platform. A small ‘widget’ runs on the user’s computer and allows the 
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browser-based application to talk to and program the Arduino. Ed and the 
author discussed the idea of applying the same concept to tools. 
 
A PCB milling application has been developed for the Magic Mill that 
handles the entire process of converting board artwork into toolpaths and 
then running these toolpaths on the machine. Additionally, the application 
features a control panel for the machine that enables tasks like jogging and 
zeroing the tool. A screenshot of the PCB milling application is shown in 
Figure 85. Like the Jacquard weaving application shown in a prior case study, 
the screen is divided into two sections: toolpath generation is on the left, and 
interactive machine control is on the right. 
 

 
Figure 86: Uploading Board Artwork 

 
Figure 87: Generating a Toolpath 

Toolpath generation begins when the user drags an image of their board 
artwork (only the PNG format is currently supported) into the toolpathing 
pane, shown in Figure 86. Cutting parameters are then set, including tool 
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diameter, how deep to cut, how far to retract, and a variety of speed 
parameters. A drop-down menu allows the user to select whether they want 
to download a G-code file, or to run the toolpath directly from the browser. 
When the ‘generate’ button is pressed, the image, along with all of the user-
provided parameters, are sent to a server. The server then runs Prof. Neil 
Gershenfeld’s Fab Modules (Gershenfeld & MIT-CBA, 2013) to convert the 
PNG into a vectorized RML file. RML is a format very closely related to the 
plotter language HPGL that is used by the Roland line of desktop milling 
machines. This process is performed twice; the first time is done with no tool 
offset, and the second time with the user-supplied tool offset. If a different 
number of contours is rendered by both iterations, the user is notified that 
some paths have been lost in the tool offsetting process. Software written by 
this author then reorders the contours around PCB traces to minimize 
traverse lengths. This is done because as of the time of this writing, the fab 
modules output contours in a highly non-optimal order. Finally, the 
reordered paths are written as a file. If G-code has been selected, the paths are 
encoded in the standard G-code format. If ‘Run’ has been selected, the 
toolpaths are compiled into a list of function calls to be made on the virtual 
machine. A number of statistics including path envelope and estimated 
cutting time are provided. A link is also provided at the bottom to allow the 
user to download the generated file. 
 

 
Figure 88: Running a Toolpath 

Once the toolpath generation process is complete, and if the user selected 
‘run’ in the drop-down menu, a ‘toolpath execution’ button appears as in 
Figure 88. The user then jogs the machine until the tool is at the desired 
origin (typically the lower left corner of the artwork) and then zeros the tool 
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by clicking on the ‘zero’ buttons next to each axis. Finally, the user clicks the 
‘run!’ button to begin milling the PCB. Pressing this button sends a 
command to the virtual machine that instructs it to request the just-
generated toolpath RPC file from the server. From here on out the RPC-as-a-
file interface kicks in, and sequentially reads and executes function calls from 
the RPC file. 

Results 

 
Figure 89: Using the Magic Mill 

 

 
Figure 90: Output using PCB Milling Application 
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The complete workflow of a browser-based PCB milling application 
controlling the Magic Mill using a virtual machine was successfully tested in 
the setup shown in Figure 89, albeit with a pen attachment instead of a 
machining spindle. Figure 90 shows the output generated by this tool chain 
from PCB artwork provided as an input. 
 
The development of the Magic Mill was conducted in a manner similar to 
that of a commercial product. The mechanical design was defined entirely 
using CAD and then manufactured using computer controlled tools. A 
custom PCB was designed in tandem with the mechanical system, ensuring 
that they fit together properly and that cable routing would be efficient and 
unobtrusive. Gestalt’s role in the development of the machine came into play 
once the PCB had been designed and firmware development commenced. As 
in the other case studies, the ability to write firmware within a 
communications framework made it possible to begin testing almost 
immediately. Also, the modular, layered structure of Gestalt enabled 
application development to be conducted concurrently with firmware and 
virtual machine development. This is because each layer of abstraction is 
independent from the other layers, and possesses known interfaces. 
 
From the perspective of the user (played by the author), the ability to control 
the machine from the developed browser-based application is currently on 
par with other machines that use native applications. Just as with these 
alternatives, the browser interface requires that software is installed on the 
user’s computer; in this case, the user must install the Python-based virtual 
machine with which the browser communicates. However because Python is 
platform-independent, the virtual machine does not need to be modified to 
support different operating systems. 

Discussion and Conclusions 

Much of the benefit of using Gestalt within a commercial context is derived 
from its modular nature. Gestalt’s enforced modularity shows promise of 
benefitting the development of a commercial product because it enables 
individual components to be built and tested independently. This property is 
anticipated to be useful for the development of tools built not by individuals 
but by teams. Additionally, the abstraction afforded by Gestalt makes it 
possible to embed all process knowledge within the application, rather than 
the tool. This means that the virtual machine has no concept of what the tool 
is being used for, only of what capabilities in terms of sensing and actuation 
that the tool affords. The result is that 3rd parties can easily develop new 
applications for the tool. For example, one could easily see the Magic Mill 
being outfitted with a USB microscope and used to take large stitched 
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pictures, or being used as an optical comparator to take distance 
measurements. 
 
The browser-based interface plays a significant role in enabling the 
extensibility of the tool. A toolhead developer can simply publish their 
application on their own server as a webpage, which the tool user can visit to 
take advantage of the functionality. This approach is nice because the user 
doesn’t need to install new software to control their tool. By providing a 
virtual machine interface to their tool, manufacturers can foster the growth of 
an ecosystem of new and unexpected applications. 
 
An additional benefit of the browser-based interface for the tool user is the 
possibility of database-driven applications. An example might be a website 
that offers a repository of PCB designs accompanied side-by-side with 
machine control. This promises a complete user experience currently lacking 
in automated tools. Standard practice today is that the generation and storage 
of design files is completely isolated from the tools used to bring them into 
reality. 
 
There are as-of-yet unexplored security issues involved in giving web sites 
control of a local tool. While the remote procedure call interface only permits 
explicitly allowed functions to be called on the machine, there is inherent risk 
in permitting a website to execute functions on a user’s machines – both their 
computers and their fabrication tools.  
 
One final observation is on how the end user relates to the tool. Unlike 
automated tools that embed most of their logic within firmware, the virtual 
machine approach gives users the opportunity to dissect the control system of 
their machine just as they might take apart its hardware. This makes the 
machine accessible to them for purposes of modification, education, and also 
perhaps just becoming more intimately aware of how it works. Additionally, 
if the same accessible framework is used to build both commercial and 
hobbyist machines, consumers may begin to feel empowered to build their 
own tools.
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Distributed Control of a Fabrication Machine 

 
Figure 91: 3-Axis Generic Desktop Fabrication Tool 

A fundamental idea driving the development of Gestalt is that the 
construction of fabrication tools should be modular. One of the important 
features of the framework towards this end is that physically separate 
components such as stepper motors can be attached together over a network 
and treated logically as a cohesive set. This circumvents the need for custom 
circuitry and firmware that typically accompanies the development of new 
machines. The present case study develops and tests the use of Gestalt to 
orchestrate a distributed network of control nodes in performing 
synchronous tasks, and explores the benefits, drawbacks, and challenges of 
the approach. 
 
We have developed a 3-axis Cartesian motion stage controlled by a 
distributed system, in which each axis’s stepper motor is controlled by its 
own physical node. These independent controllers reside on a common 
network bus over which they communicate with their virtual nodes. To test 
the ability of this machine’s control system, which is comprised of multiple 
nodes, to be treated logically as a single cohesive machine, the web-based 
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PCB milling application developed in the ‘Portable Multi-Purpose CNC 
Machine’ case study is applied without modification to this machine. 

Hardware 

The mechanical hardware used for this exploration of networked motion 
control is based on a machine designed by the author and Maxim Lobovsky 
as part of the ‘Machine’s That Make’ project at the MIT Center for Bits and 
Atoms. Much of the mechanical hardware shown in this case study was built 
and in part designed by CADLab UROP student Benjamin Niewood. 
  

 
Figure 92: Parallel Kinematic Gantry 

 
Figure 93: Z Axis and Networked Nodes 

The XY kinematics, shown in Figure 92, are comprised of two perpendicular 
shafts, each of which can be translated independently by a stepper motor. 
The carriage rides on both shafts and thus moves with their intersection 
point. This mechanism was inspired by a design created by Greg Schroll for a 
class project in MIT’s robotics course 2.12. The advantage of this gantry 
design is that both motors are stationary, thus reducing the inertia of the 
carriage over the typical serially stacked approach taken by many Cartesian 
platforms. Figure 93 shows both the leadscrew-driven Z-axis of the machine, 
as well as the three stepper control nodes that are connected together, and to 
the computer running the virtual machine, by a colorful ribbon cable. 
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Figure 94: A Networked Single Stepper Controller 

Each stepper control node, shown in Figure 94, contains a stepper driver IC, 
a network port (FABNET), a microcontroller running firmware built with 
the Gestalt C library, and a button used to pair the physical node with its 
virtual counterpart. There is no digital potentiometer to set the motor 
current limit, but a trimmer potentiometer is provided for this purpose 
whose output can be read by the microcontroller to assist the user in setting 
the desired motor current.  
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Virtual Nodes 

 
Figure 95: Networked Nodes and Their Virtual Nodes 

Each networked physical node is represented within the virtual machine by 
its own virtual node, as depicted in Figure 95. The pairing between the 
virtual nodes and the physical nodes is handled by the Gestalt interface, 
which, as described in the Framework section, manages routing packets from 
virtual to physical nodes (and vice versa) and also performs synchronization 
of multi-node commands over the network. The stepper controller virtual 
node contains a number of service routines, listed below: 

• enable() turns on power to the stepper motor, causing it to hold its 
current position. This also happens automatically whenever a move is 
initialized. 

• disable() turns off power to the stepper motor. This is useful for 
jogging the machine around by hand, or to prevent the motors from 
overheating. 

• getReferenceVoltage() returns the value of the motor current 
limit reference voltage as set by a trimmer potentiometer. This is used 
to help the user set a desired motor current. 

• spin() causes the driver to take a certain number of steps, using the 
same acceleration/deceleration profile that is described in detail in the 
‘portable multi-purpose CNC machine’ case study. An additional flag 
is sent to the physical node indicating whether the move is 
synchronous. If synchronous, the node waits to receive a multicast 
synchronization packet before commencing the move. This allows 
multiple nodes to be configured with unique step commands, and 
then started simultaneously upon the receipt of the sync multicast 
packet. The algorithm used to execute multi-axis moves across 
multiple nodes is described in detail in Appendix A. 

• spinStatus() queries the current step position and move buffer 
availability of the node. This is used to determine when an open 
buffer slot becomes available. 
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• sync() sends out a multicast synchronization packet. This is called 
by the Gestalt interface after it has serialized an action set into a 
sequence of action objects to be synchronized and placed them in the 
channel access queue. 

Virtual Machine 

 
Figure 96: Distributed Machine Control Virtual Machine 

The virtual machine that controls the tool is nearly identical to the virtual 
machine of the ‘Portable Multi-Purpose CNC Machine’ case study. The 
virtual 3-axis stepper control node of that example is substituted for here by 
three virtual 1-axis stepper nodes wrapped in a compound node. The 
compound node allows machine-level functions to interact with a distributed 
control system in exactly the same way that they do a monolithic one.  

Application 

The same browser-based PCB milling application that was used in the 
‘Portable Multi-Purpose CNC Machine’ case study is used here to test the 
virtual machine control of a distributed physical control system. Being able to 
use the same application to control both machines is a good test of whether 
Gestalt provides sufficient abstraction such that the modularity of the 
physical control system is transparent at the application level. 
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Results 

 
Figure 97: Drawing a PCB Using Distributed Control 

Construction of the machine’s control system was indeed made easy by the 
modular approach. Only one multi-conductor wire was needed to connect 
together the electronics for the entire machine! However there are currently 
still a few kinks in Gestalt that have come to light while testing virtual 
machine control of networked single-axis physical nodes. The path planner 
originally used was causing the physical nodes to lock up (see the discussion 
in the ‘Virtual Nodes’ sub-section of the ‘Portable Multi-Purpose CNC 
Machine’ case study), so a less sophisticated path planner was used which 
maintains a constant motor velocity without acceleration/deceleration 
planning. Figure 97 shows a drawing created by a browser-based PCB milling 
application, where a pen was used in lieu of a spindle. About one third of the 
way through the toolpath, a phase-lag appeared between the axes, causing a 
distortion of the individual traces. However, macroscopically all of the traces 
are in the correct locations . The same toolpath was run multiple times and 
always resulted in exactly the same distortions, indicating that the error is 
repeatable and thus likely a correctable programming error. 
 
On occasion there were noticeable pauses in motion, presented as ‘stuttering’ 
of the motors, that were very likely caused by bandwidth issues leading to 
starvation of the nodes’ motion buffers. At the moment, bandwidth problems 
caused by latency appears to be the largest technical issue of using Gestalt to 
control a distributed set of nodes over the FABNET network. 
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Discussion and Conclusions 

The goals of this case study were to develop the capabilities of Gestalt for 
controlling multiple physical nodes as a logical whole, and to test the 
effectiveness of this approach in improving the process of machine 
construction. From an algorithmic perspective, Gestalt has been shown to 
successfully synchronize multiple nodes to achieve desired machine motion. 
However there are still a number of implementation bugs that need to be 
worked out.  
 
The philosophical advantage of this approach is that machine controllers can 
be assembled faster at the virtual machine level than at the hardware level. 
This is particularly true in cases where single control boards are not 
economically available with all of the desired features for controlling a 
complex machine like a robotic arm. Modularity also allows the control of 
each component to be abstracted from the machine builder, permitting them 
to focus on building a machine rather than interfacing with components. 
Additionally, there are aesthetic and wire-routing advantages to using a single 
network cable rather than multiple wires running from each component to a 
centralized control board. 
 
There are several drawbacks to the distributed control approach. The primary 
disadvantage is cost. Each node requires its own microcontroller and the 
associated support circuitry, along with its own PCB, whereas integrated 
controllers frequently share a single microcontroller and PCB among many 
components. One example of this is the RAMBo board available from 
UltiMachine (Ultimachine, 2013), which is capable of controlling 5 stepper 
motors simultaneously. However, if a single board with all of the required 
features is not available, the increased cost associated with modularity is likely 
far less than that of developing a custom monolithic control board. As was 
shown in this case study, the virtual machine layer of Gestalt is agnostic to 
whether physical control is centralized or distributed. Therefore there is no 
disadvantage to picking whichever approach best suits the particular project. 
 
The greatest challenge facing distributed control, as currently implemented 
by Gestalt, is scaling. Each additional node requires its own dedicated packet 
per synchronized event, which means that the maximum machine bandwidth 
(in synchronized moves per second) is inversely proportional to the number 
of nodes. This is particularly exacerbated by round-trip latency that has been 
largely attributed to Python’s interface to the Virtual COM Port over which 
it communicates with the FABNET network. Currently, about 50 packets 
can be sent and received per second, which is significantly less than the 800 
round-trip-packets/sec which the serial port is in theory capable of. It is for 
this reason that the managed/Gestalt network protocol, discussed in the 
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‘Framework’ section, has been conceived to maximize utilization of the 
network bandwidth. At this estimated maximum data rate, a 6-axis robotic 
arm could be controlled at a rate of roughly 100 instructions per second. The 
speed at which this packet rate can move the arm is proportional to the 
length of motion encoded by each packet. Therefore, more accurate motion 
results in slower maximum speeds. Because the target audience of Gestalt is 
the individual user rather than industry, the primary concern is making new 
tools accessible to this audience rather than optimizing the operation of the 
tools. However, improving the performance of the networked node approach 
described by this case study is certainly an area deserving of future work. 
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Discussion 

Gestalt is a framework that facilitates the rapid development of control 
systems for automated tools. Over the course of the case studies presented 
here, Gestalt has demonstrated its ability not only to expedite the 
construction of machine controllers, but also to potentially enable new ways 
of interacting with automated tools. Additionally, much has been learned 
about what is important in a framework for building tools, and who its 
potential audience might be. 
 
The key to Gestalt’s utility on nearly all fronts has proven to be its modular 
approach. Three types of modularity have been identified as being 
particularly useful: the ability to assemble cohesive controllers from disparate 
hardware modules, a layered control system architecture, and intra-layer 
software modularity.  
 
One area in which modularity is important to a framework for building tools 
is in hardware. The distributed control system case study shows how discrete 
hardware nodes joined over a network can allow controllers to be integrated 
in software rather than needing to build custom hardware. This modular 
approach to connecting hardware is particularly useful for machines for 
which there are no standard controllers available, such as the tape printer 
developed in the first case study. An off-the-shelf industrial inkjet head was 
controlled in tandem with custom tape-feeding hardware by logically 
combining their functionality inside a virtual machine. The pattern of 
connecting arbitrary units of functionality on a network and coordinating 
their behavior in software might lend itself to the creation of a basic language 
for machine control. Even if a specific control board is available, having a 
finite set of components on hand that can be combined to replicate the 
functionality of any controller would save time in acquiring specific hardware 
from a vendor.  
 
Another important form of modularity within Gestalt is provided through 
layers of abstraction. The three layers of the control system – nodes, machine, 
and application – operate within restricted, non-overlapping scopes. For 
example, the stepper controller of the coil winder case study supports 
multiple motors, yet does not make assumptions about what mechanisms are 
driven by the motors. This is in contrast with many standard off-the-shelf 
stepper control boards like the Synthetos TinyG (Synthetos, 2013) that 
accepts XYZ commands assuming a Cartesian motion stage, and is 
advantageous because it allows kinematics to be defined within the virtual 
machine without compromising the generality of the hardware controller. 
For the coil winder, this made it easy to define a polar coordinate system.  
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Another example of abstraction is the separation between the application and 
virtual machine layers, as evidenced by the control system built for the Magic 
Mill (shown in the ‘Portable Multi-Purpose CNC Machine’ case study). 
Despite its name, the Magic Mill is intended as a multi-purpose tool for 
many different applications. Because the virtual machine makes no 
assumptions as to the use of the tool, all knowledge of process is kept within 
the application. This allows multiple applications to control the same 
machine for specific purposes, or one application to control different 
machines for the same purpose. Throughout the case studies, the modularity 
of layers also proved important in assisting the development process, by 
permitted the rapid development of one layer using pre-existing layers from 
other projects. For example, the PCB milling application, which had already 
been validated on the Magic Mill, was instrumental in the development of 
the distributed control machine by allowing the control system to be tested 
during development. This leap-frog approach avoids a chicken-and-egg 
situation where the virtual machine can’t be tested until the application 
works, and the application can’t be tested without a working virtual machine. 
 
The final type of modularity that we identify is modularity within each 
software layer. This is particularly important within the virtual machine layer. 
Wherever possible, every object type used in the virtual machine layer – 
including kinematic matrices, virtual nodes, and interfaces – is self-sufficient. 
For example, Gestalt provides pre-built functions like move() and jog(), that 
were shown in the case studies to be able to control both a single 3-axis node 
and three single-axis nodes (within a compound node) without any 
modification. The kinematics and mechanics objects are equally 
interchangeable. This not only makes development of the virtual machine 
easier because the programmer does not need to worry about inadvertent 
conflicts, but it allows software modules to be shared and reused. By way of 
example, there is currently no kinematic matrix for a 6-axis robotic arm. 
However, as soon as this has been implemented once, it can be utilized to 
control any kinematically similar machine, irrespective of other differences 
between the hardware setups such as types of motors or motor controllers 
being used. There is also some degree of modularity within the node layer. 
We showed in the case studies how the same node service routines could be 
reused to speed development of custom nodes, and suggest that enabling the 
rapid and simultaneous construction of virtual and physical nodes using drag-
and-drop service routines should one day become a formalized aspect of 
Gestalt. 
 
When development first began on Gestalt, the intended audience was 
individuals who want to build their own automated machines to expand their 
abilities to shape matter through their computer. The case studies have given 
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a more refined perspective on who exactly might want to use the framework 
and for what purposes.  
 
One type of user is the individual with a specific task in mind, like needing to 
wind 24 electromagnets with greater precision than can easily be done by 
hand, as was shown in the coil winder case study. This person is essentially 
building a physical script (to borrow programming parlance), and for them 
the benefits of machine construction must outweigh the costs (in terms of 
time and/or money). A crossover point exists where it is less work to build a 
machine to automate a task instead of doing that task by hand, and vice 
versa. Both construction time and how quickly the machine operates are 
therefore important to the user with a specific task in mind. Because their 
intention is to use the machine for a one-off operation, their willingness to 
invest in creating a user interface is minimal, and the ability to control the 
machine using a python script may very well be their preferred means of 
interfacing with the tool. It was determined upon reflection of the coil 
winder that mechanical construction dominated the overall building process; 
unfortunately Gestalt has little influence over this aspect of the project. 
 
Another type of user is the individual who is interested in constructing a 
fabrication machine simply to expand the repertoire of tools and processes 
available to them. The Jacquard loom is an example of such a machine. It 
wasn’t built to weave heart bracelets; rather, it was constructed so that the 
user could weave any bracelet whenever they felt the urge. This user’s needs 
are very different from the person who builds a machine for a specific 
purpose. They do not care as much about speed of operation, because the 
purpose of their machine is to make a fabrication process possible and/or 
more enjoyable (in this example, designing with their computer and 
interfacing directly to a loom). It is possible that the user is building an 
entirely new type of tool, or simply replicating a design that is not 
commercially accessible. The joy of using the tool is important to this type of 
builder, and the user interface has a large influence in this regard. Gestalt has 
been shown to be supportive towards empowering the rapid construction of 
user interfaces for tools. Anyone with experience making a website can build 
a rudimentary interface with pushbuttons, and a slightly more sophisticated 
use of JavaScript allows them to design complex interactions. Additionally, 
because of the separation of layers previously discussed, one loom builder 
might be able to use another’s already-made browser-based application if it is 
published online.  
 
Both individual users have a strong motivation to use pre-existing hardware 
nodes wherever possible. They likely do not care about tightly integrating the 
hardware of their machine because it is not intended to be mass-produced. 
Rather, they would like to focus on the development of the overall machine 
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without becoming bogged down in the details of interfacing with discrete 
components. The modularity of Gestalt was tested in this regard only in a 
hypothetical manner because even nodes that conceivably could be off-the-
shelf eventually, had to be designed and built by the author because they did 
not yet exist. 
 
Gestalt also has utility for companies looking to build a new personal 
fabrication machine intended for sale. Their needs and development process 
are quite different than that of the individual. They care about unit cost and 
footprint of the electronics, so they will likely build their own monolithic 
control board rather than combine multiple pre-built nodes on a network. It 
is worth noting that the extensibility of a machine-area network still holds 
benefits for the tool producer. Several of the case studies explored how 
Gestalt’s C library helps in the development of custom hardware intended for 
use with the Gestalt framework. Within a commercial setting, the task of 
machine construction is distributed among individuals rather than 
concentrated in a single individual. Gestalt’s hierarchical approach to 
machine control is expected to be beneficial here because it draws natural 
borders between various aspects of machine control construction. 
Additionally, the ability to seamlessly transition machine control from a 
rapidly prototyped collection of networked nodes to a highly integrated 
custom node could be beneficial in parallelizing the development of a 
product. 
 
Gestalt allows great flexibility, but sometimes at the cost of performance, as 
was seen with the fabrication machine using distributed control. Latency 
issues in this case study prevented the machine from performing as desired. 
This makes the current implementation of Gestalt more suitable for enabling 
the creation of machines that satisfice rather than maximize, as was discussed 
in the introduction, and thus is likely better suited for building machines 
intended for use in a personal capacity rather than industrial production. 
 
In addition to assisting in the construction of machine controllers, Gestalt 
has shown promise for enabling individuals to interface with tools in new 
ways. One example of this is epitomized by the tape printer. The purpose of 
that tool was to print continuous non-repeating patterns onto masking tape, 
which necessitates a continuous non-repeating digital pattern. Being able to 
interface with the tape printer directly from the algorithm responsible for 
generating this patterns is therefore very useful. This was only tested to a 
limited degree in the tape printer – while the machine was controlled using a 
script, the designs fed to it were static images. However its utility was made 
apparent by the case study. 
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Perhaps one of the biggest discoveries over the course of this research was the 
breadth of possibilities afforded by browser-based applications for fabrication 
tools. We discussed how Gestalt’s layered architecture provides the necessary 
abstraction for one machine to be controlled by a variety of applications. Not 
only does the accessibility of the technologies for developing browser-based 
applications – the same technologies used to build web pages – make it easier 
for them to be created, but the web provides a prolific arena for their 
publication. Browser-based applications also do not need to be installed and 
are platform independent. Already, 3D design is being conducted within the 
browser, as evidenced by Tinkercad (Autodesk, 2013). Browser-based control 
offers to place the entire digital fabrication workflow – CAD, toolpath 
generation, and machine control – all in the same place. But the most 
exciting prospects for browser-based machine control apps occur when they 
are connected to a database-driven backend. The digital fabrication workflow 
might one day be attached to repositories of designs, enabling sharing not 
only of models but also of manufacturing techniques. The virtual machine 
approach has an additional benefit here – because the configuration of the 
machine is represented by the virtual machine, it is possible for information 
about the user’s available tools to make its way upstream, influencing the 
toolpath generation process, informing the design process with respect to 
manufacturable geometries, and even filtering repository searches to show 
only objects which the user has the ability to reproduce. 
 
This last point regarding the accessibility of the virtual machine touches on 
one of the additional aspects of Gestalt that has come to light during this 
work. Because the dominant portion of the controller resides on the user’s 
computer as a virtual machine, and because it is built using an open-source 
framework (Gestalt is intended to become open-source), Gestalt changes the 
user’s relationship with their tools. Even if the tool was purchased rather than 
built by the end user, the ability to peer into the inner workings of the 
control system empowers the user to learn from and modify their tools in 
ways that are impossible with current consumer-grade fabrication tools like 
the Roland Modela desktop mill (Roland DG, 2013) or the Shopbot gantry 
router (Shopbot Tools, 2013). 
 
There are a number of fundamental issues with Gestalt that still require 
resolution before it can achieve its full potential. The framework is 
awkwardly located on the spectrum of offline and real-time control. Most 
machine tools, from the perspective of the user, are offline. A static file 
containing motion instructions, typically encoded in G-code, is prepared and 
then fed to the machine. By way of contrast, an example of a real-time 
computer-controlled tool is a KUKA robotic arm (KUKA 
Aktiengesellschraft, 2013), which, when in real-time mode, receives 
continuous motion commands from an application that are immediately 
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executed by the arm’s controller. Gestalt wants to be real-time. Commands 
are issued by making function calls on the virtual machine, and then are 
ideally executed immediately on the machine. Nominally, the state of the 
virtual machine and the physical machine are always perfectly in phase. 
However, to support look-ahead path planning, and to circumvent the effects 
of network bandwidth and latency limitations, moves are stored in buffers 
both in the virtual machine and in the physical nodes. This currently makes 
it difficult to perform important tasks like stopping a toolpath mid-stream, 
because phase lags in state between the virtual and physical machines need to 
be recovered. Additionally, it is difficult to intersperse non-buffered 
commands with buffered commands. For example, a user program might 
issue a spindle start command, then 100 move commands, and finally a 
spindle stop command. Move commands get automatically buffered in the 
physical node, but spindle commands do not. The effect is that perhaps only 
a few moves would be executed on the physical node before the spindle stops. 
Finally, there are no provisions yet for making real-time adjustments to 
machine commands based on incoming sensor data, which is an area of much 
interest to the manufacturing sector (R. Ardekani & Yellowley, 1996). 
 
A related issue with Gestalt currently is that network latency problems still 
prevent high-speed motion of a tool despite the use of buffering. This 
becomes painfully evident in light of the speeds at which 3D printers 
typically move. The hobbyist 3D printer Ultimaker is able to print with high 
resolution at 150mm/sec (Ultimaker, 2011). If in particularly detailed areas 
its motion profile consist of line segments 0.1mm long (and this is a 
conservative estimate), a packet rate of 1500 packets/sec would be required 
between the virtual and physical machine. 
 
These inter-related issues of low communications bandwidth and non-real-
time control, both stemming from communications latency, currently 
prevent certain types of machines built with Gestalt from competing with 
currently available hobbyist equivalents. Even before these issues are resolved, 
however, there is still an opportunity for Gestalt to find utility in these 
domains that require higher performance. Virtual ‘solo/independent’ nodes 
can be built for streaming G-code to high-speed all-in-one controller boards 
like the aforementioned Synthetos TinyG, thereby connecting the still-
relevant application layer to machines that, for performance reasons, cannot 
take advantage yet of the more basic machine control functions of Gestalt. 
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Conclusions 

This research developed a framework, named Gestalt, for enabling 
individuals to rapidly construct controllers for new and potentially non-
traditional automated fabrication machines. The approach taken is to split 
control between a virtual machine running on a personal computer, and a 
collection of modular physical nodes responsible for interfacing at a low level 
with sensors and actuators. A Python library was written to expedite the 
construction of virtual machines, and a matching C library aids in the 
creation of custom hardware control nodes. These halves of the control 
system were joined over a USB interface, and in some cases a novel device-
level network was additionally used to enable synchronization between 
hardware elements.  
 
Several advantages over traditional controller architectures are realized with 
our approach. Modular hardware controllers enable the usually tedious task 
of integrating hardware to be done more easily in software at the virtual 
machine level. Layers of abstraction between the application, virtual machine, 
and physical node levels enable incremental changes to be made to one layer 
without affecting other layers, and also allow testing of changes to occur 
rapidly within a pre-existing framework. For example, the same physical 
motor controllers can be used both by machines with Cartesian and polar 
kinematics, meaning that new kinematics can be tested immediately without 
needed to co-develop compatible hardware. Additionally, clean interfaces 
between levels of machine control mean that a variety of applications can be 
made to work with a single multi-purpose tool, and likewise similar tools can 
be controlled by a single application. Modularity within each layer promotes 
reuse of components – both physical and virtual – between machines, which 
greatly increases the speed of development. 
 
Multiple types of users were shown to benefit from the framework developed 
in this research. Individuals seeking to automate a specific task are able to 
rapidly construct a quick-and-dirty ‘physical algorithm’ to achieve higher 
quality results and in some cases to decrease the overall time needed to 
conduct their task. Users who wish to generally extend the range of their 
personal fabrication capabilities are empowered to build controllers for 
unusual tools such as a personal Jacquard loom. Companies who are seeking 
to develop personal fabrication machines for sale benefit from the ability to 
cleanly split control development among multiple people, and also benefit 
from a smooth transition between modular development hardware and 
monolithic custom control boards.  
 
Gestalt’s virtual machine approach demonstrated enhanced possibilities for 
interfacing applications more intimately with machines. Automated tools can 
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be controlled directly by software programs simply by importing the virtual 
machine as a module and then calling its methods. This promises to enable 
control of tools by the same algorithms used to generate tool instructions, 
thus entirely bypassing intermediate tool control languages like G-code. 
Algorithmic control of tools both reduces the number of steps needed to 
operate a tool, and permits on-the-fly generation of infinitely long sequences 
of machine commands as might be used, for example, to print non-repeating 
patterns like the digits of Pi on rolls of tape.  The virtual machine approach 
also simplifies the control of tools by browser-based interfaces, which opens a 
new world of rich web-connected and database-driven applications for 
machine control. This particularly makes sense for personal fabrication 
machinery because the Internet plays an increasingly important role in 
empowering individuals to create, from providing free web-based design tools 
to acting as a forum for sharing design and fabrication techniques. 
 
Because the virtual machine framework is written in a platform-independent 
language, and because communication between the virtual and physical 
machines occurs over ubiquitously available interfaces including USB, Gestalt 
is accessible to a wide range of individuals for personal use. The design 
choices that have enabled these properties have also been discovered to 
present limitations on Gestalt’s current abilities. The high latency inherent in 
the USB interface, along with latencies associated with non-real-time 
operating systems such as Windows, Mac OS X, and most popular versions 
of Linux, prevent Gestalt from operating in real-time. This introduces lags in 
state between the virtual and physical machines, which have made 
implementing features like pausing and state-estimation difficult. These 
latencies, when coupled with the need to ensure reliable transmission of 
information between the virtual and physical machines, act to significantly 
limit the overall communications bandwidth. The effect is that Gestalt 
currently has difficulty issuing rapid sequences of commands as are typically 
needed for high-speed machining and 3D printing operations. 
 
Gestalt originated as a virtual machine based system controlling a circuit 
board mill for the author’s senior thesis in 2008. Since then, it has slowly 
evolved to become what it is today: a general framework for assisting in the 
creation of new automated tools. We spoke in the introduction about how 
programming has become a general literacy. Fueled by the Maker Movement 
and the Open Source Hardware Movement, the ability to create physical 
objects is again being viewed in a similar light. We see Gestalt as resting at 
the intersection of these two literacies, and suggest that the ability to make 
machines that make6 should be universally accessible. If tools are the gears 

                                                   
6 The phrase ‘machines that make’ is borrowed from the MIT Center for Bits and 
Atoms project of the same name. 
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that enable us to climb the hills of creation, it is our hope that Gestalt may 
serve as the continuously variable transmission.
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Future Work 

There are many areas of future investigation that have been uncovered over 
the course of this thesis. They can be divided roughly into two areas: 
framework improvements and future explorations. 

Framework Improvements 

One of the areas still lacking in Gestalt is the ability to control high speed 
motion along detailed paths. This is because latency issues in the 
communications system are limiting the round-trip time of request and 
response packets and thus overall system bandwidth. Solving this problem 
might assume two approaches: figuring out how to decrease latency, or 
adopting an alternative method of ensuring that packets have been received 
and thus bypassing the need for response packets from the physical nodes 
back to the virtual nodes. It is the latter approach which has been 
conceptually explored in the form of the ‘managed/Gestalt’ type node. This 
hypothetical communications system is described in more detail in the 
Framework section and in Appendix C, and the hardware support necessary 
for its implementation is already a part of the FABNET standard. The results 
of the distributed control case study, in which bandwidth between virtual 
and physical nodes was indeed an issue, indicate that the ‘managed/Gestalt’ 
approach is a natural next step in the development of Gestalt. 
 
Another area of work is implementing a means of resynchronizing state 
between the virtual and physical machines. Because buffering occurs on the 
physical nodes, the virtual machine has a tough time knowing the exact state 
of the physical machine at any given time. This makes implementing features 
like pausing or stopping mid-path difficult without losing position. 
 
There are also a number of bugs that currently reside in the framework and 
need to be fixed before Gestalt is ready for general use.  One is in the path 
planning algorithm of the move function. As was described in the Magic Mill 
and distributed control case studies, the current path planner is causing lock-
up issues that can render a machine frozen. Several approaches to the solution 
were discussed in the case studies. Another bug was discovered while working 
on the distributed control case study. Synchronization between nodes appears 
to be lost in a way that is repeatable: at always the same point in the toolpath, 
a phase lag is introduced between the nodes. This is likely caused by a bug in 
the interface module that decomposes action sets into synchronized action 
objects. 
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Future Explorations 

One emerging area that the author finds exciting is that of ‘personal 
factories’. Several projects are currently developing desktop-scale 
manufacturing lines for automating the production of relatively small 
quantities of products. One such product is a pencil called ‘Sprout’: the 
concept is that in lieu of an eraser, a small gelatin capsule contains a herb seed 
(Democratech, 2012). When the pencil is expended, it can be planted in the 
ground. In order to maintain control over manufacture of these pencils, the 
team behind Sprout has built an small-scale factory that serially performs 
multiple operations on the pencil including preparing the bare pencil, filling 
the seed capsule, and gluing the capsule onto the back of the pencil. Another 
project that is developing its own small factory is called ‘The Solar Pocket 
Factory’, which is self-described as ‘the world's first automated tabletop 
micro-solar production machine’ (Solar Pocket Factory, 2013). Both 
examples demonstrate small groups of individuals who are not only building 
their own tools, but are building their own manufacturing lines. 
 

 
Figure 98: The Desktop Factory 

The area of personal manufacturing seems like a fertile ground for the use of 
Gestalt. Machinery for this purpose is frequently custom-built, and also 
frequently constructed in a modular fashion. This use case is similar to the 
specific purpose case discussed in the conclusions. Already, work has begun 
to explore this arena. Figure 98 shows the ‘Desktop Factory’, whose hardware 
was built primarily by Benjamin Niewood as a summer project at the MIT 
CADLab (in which the author is a student.) The concept is to extend the 
notion of networked nodes beyond the control system and into the realm of 
matter. Several automated 3-axis gantries like the one used in the distributed 
control case study are placed on a table. A black tape line is laid down 
between the machines, connecting them like a suburban street connects 
houses in a quiet neighborhood. Each machine is outfitted with a different 
toolhead to conduct a particular fabrication operation. For example, one 
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machine might have a spindle to machine a circuit board, another might be 
equipped with a syringe to apply solder paste, and a final machine might be 
configured as a pick-and-place that can populate the board with components. 
A small line-following robot, seen in the middle of the photo in Figure 98, 
travels along the black tape shuttling pallets between the machines, thus 
forming a physical network. Each machine is equipped with a kinematic 
coupling that ensures each pallet mounts to the machines in a repeatable 
manner, and also provides a large enough error tolerance for the robot to be 
able to successfully transfer the pallets to the machines. This project is 
currently a work-in-progress, but represents a broader direction in which 
Gestalt could grow. 
 
Another exciting area of exploration is browser-based control of machine 
tools. This thesis has discussed many of the benefits of this approach to 
interfacing users with tools. Beyond the ease with which websites and thus 
machine applications can be developed and published lie several possibilities 
for integrating web control with ‘Web 2.0’. One specific example might be 
combining a part repository with machine control for PCB milling within 
the same website. This has obvious advantages for sharing designs, but more 
importantly fills in a gap in current design sharing practices: there is no good 
way of sharing techniques for fabrication, even as simple as successful 
machine settings. By combining design sharing with fabrication, a low-
impedance path exists for generating rich documentation nearly 
automatically. For example, consider a website that stores user-designed 
circuit boards. An individual logs into that site, selects a design they wish to 
make (or upload their own), and then click ‘make’. A new page appears 
similar to the PCB milling application control panel in Figure 85. The user 
selects their tool diameter, and recommended settings for feed rate and 
spindle speed appear based on an interrogation of the users virtual machine 
(i.e. if the machine has a slow spindle, a lower feed rate may be selected). 
Should the bit break during use, this information can be readily fed back to 
the application, causing it to suggest a different feed rate to subsequent users 
with similar setups. 
 
Throughout the case studies, the virtual machine has always run on the same 
computer as the user application (be it a script or a browser-based 
application). Lauren Wright, a CADLab UROP student this summer, has 
installed the virtual machine on a $25 Raspberry Pi computer (Raspberry Pi 
Foundation, 2013), and has successfully controlled the personal Jacquard 
loom from an iPad over the Internet. Further understanding the many ways 
in which machines, virtual machines, and user apps can be connected and 
speak to each other is an additional large area of future work.





 139 

References 

Andrew. (2013, January 18). Design Unique Things Easily With MakerBot Customizer. Makerbot 
Blog. Retrieved from http://www.makerbot.com/blog/2013/01/18/design-unique-things-
easily-with-makerbot-customizer/ 

Ardekani, R., & Yellowley, I. (1996). The control of multiple constraints within an open 
architecture machine tool controller. Journal of mechanical design, 118(3), 388–393. 

Ardekani, Ramin, Oldknow, K., & Yellowley, I. (2011). The design of an embedded framework for 
programmable automation systems. Proceedings of the Canadian Engineering Education 
Association. 

Autodesk. (2013). Tinkercad - Mind to design in minutes. Retrieved August 26, 2013, from 
https://tinkercad.com/ 

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems Journal, 
4(1), 25–30. doi:10.1147/sj.41.0025 

Carr, D. (2010). Mantis 9.1 CNC Mill - Make Your Bot! Retrieved August 26, 2013, from 
http://makeyourbot.wikidot.com/mantis9-1 

Ciuffo, M. (2013, August 20). Twitter Knitter combines 40 year old hardware with modern social 
media. Hackaday. Retrieved from http://hackaday.com/2013/08/20/twitter-knitter-
combines-40-year-old-hardware-with-modern-social-media/ 

Creative Commons. (2013). About The Licenses - Creative Commons. Retrieved August 26, 2013, 
from http://creativecommons.org/licenses/ 

Democratech. (2012). Sprout: a pencil with a seed. Retrieved August 26, 2013, from 
http://www.democratech.us/sprout/ 

Essinger, J. (2004). Jacquard’s Web. Oxford, England: Oxford University Press. 

Firmata. (2013). Main Page - Firmata. Retrieved August 26, 2013, from 
http://firmata.org/wiki/Main_Page 

Gardner, M. (1967). Mathematical Games. Scientific American, 216(4), 116–120. 

Gershenfeld, & MIT-CBA. (2013, July 10). kokompe. Retrieved August 26, 2013, from 
http://kokompe.cba.mit.edu/ 

Gershenfeld, N. (2012). How to Make Almost Anything: The Digital Fabrication Revolution. 
Foreign Affairs, 91, 43. 

Gershenfeld, N., & Cohen, D. (2006). Internet 0: Interdevice Internetworking - End-to-End 
Modulation for Embedded Networks. IEEE Circuits and Devices Magazine, 22(5), 48–55. 
doi:10.1109/MCD.2006.273000 

Gilloz, E. (2012, April 14). RepRap Family Tree. Retrieved August 26, 2013, from 
http://reprap.org/wiki/RepRap_Family_Tree 

Haussge, G. (2013). OctoPrint.org. Retrieved August 26, 2013, from http://octoprint.org/ 



 140 

KUKA Aktiengesellschraft. (2013). KUKA. Retrieved August 26, 2013, from http://www.kuka.com/ 

LIN Engineering. (2013). NEMA Stepper Motors. Retrieved August 26, 2013, from 
http://www.linengineering.com/stepper-motors/ 

Make Magazine. (2013). Maker Faire Overview. Retrieved from 
http://cdn.makezine.com/make/sales/Maker-Faire-Overview.pdf 

MIT-CBA. (2013). The Machines that Make Project at the MIT Center for Bits and Atoms. 
Retrieved August 26, 2013, from http://mtm.cba.mit.edu/ 

Modkit. (2013). Modkit. Retrieved August 26, 2013, from http://www.modk.it/ 

Motiph. (2013). moti – everyday robotics. Retrieved August 26, 2013, from http://www.moti.ph/ 

Moyer, I. (2008, May). Rapid Prototyping of Rapid Prototyping Machines. Massachusetts Institute of 
Technology, Cambridge, MA. Retrieved from 
http://cba.mit.edu/docs/theses/08.06.Moyer.pdf 

National Instruments. (2013). NI LabVIEW - Improving the Productivity of Engineers and 
Scientists - National Instruments. Retrieved August 26, 2013, from 
http://www.ni.com/labview/ 

Noble, D. F. (1978). Social Choice in Machine Design: The Case of Automatically Controlled 
Machine Tools, and a Challenge for Labor. Politics & Society, 8(3-4), 313–347. 
doi:10.1177/003232927800800302 

Oldknow, K. D., & Yellowley, I. (2001). Design, implementation and validation of a system for the 
dynamic reconfiguration of open architecture machine tool controls. International Journal of 
Machine Tools and Manufacture, 41(6), 795–808. doi:10.1016/S0890-6955(00)00109-7 

OpenSCAD. (2013). Openscad.org. Retrieved August 26, 2013, from http://www.openscad.org/ 

OSHWA. (2013). OSHWA.com. Retrieved August 26, 2013, from http://www.oshwa.org/ 

Oxford Dictionaries. (2013). Gestalt. Oxford University Press. 

Peek, N. (2012). Nadya Peek makes something that makes almost anything. Retrieved August 26, 
2013, from http://fab.cba.mit.edu/classes/S62.12/people/nadya.peek/vm.html 

Phidgets. (2013). Phidgets Inc. - Unique and Easy to Use USB Interfaces. Retrieved August 26, 
2013, from http://www.phidgets.com/ 

Pritschow, G., Altintas, Y., Jovane, F., Koren, Y., Mitsuishi, M., Takata, S., … Yamazaki, K. (2001). 
Open Controller Architecture – Past, Present and Future. CIRP Annals - Manufacturing 
Technology, 50(2), 463–470. doi:10.1016/S0007-8506(07)62993-X 

Raspberry Pi Foundation. (2013). Raspberry Pi | An ARM GNU/Linux box for $25. Take a byte! 
Retrieved August 26, 2013, from http://www.raspberrypi.org/ 

Reprap. (2013). RepRap - RepRapWiki. Retrieved August 26, 2013, from 
http://reprap.org/wiki/Main_Page 

Roland DG. (2013). Roland Modela MDX-15. Retrieved August 26, 2013, from 
http://www.rolanddg.com/product/3d/3d/mdx-20_15/mdx-20_15.html 



 141 

ROS. (2013). ROS/concepts - ROS Wiki. Retrieved August 26, 2013, from 
http://www.ros.org/wiki/ROS/concepts 

Shapeways. (2013). Easy to use customization and design apps for 3D printing with Shapeways. 
Retrieved August 26, 2013, from http://www.shapeways.com/creator 

Shopbot Tools. (2013). ShopBotTools CNC Routers. Retrieved August 26, 2013, from 
http://www.shopbottools.com/ 

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 
63(2), 129–138. doi:http://dx.doi.org.libproxy.mit.edu/10.1037/h0042769 

Sketchup. (2013). Sketchup.com. Retrieved August 26, 2013, from http://www.sketchup.com/ 

Smith, C. S., & Wright, P. K. (1996). CyberCut: A World Wide Web based design-to-fabrication 
tool. Journal of Manufacturing Systems, 15(6), 432–442. 

Solar Pocket Factory. (2013). Solar Pocket Factory. Retrieved August 26, 2013, from 
http://solarpocketfactory.com/ 

Sollmann, K. S., Jouaneh, M. K., & Lavender, D. (2010). Dynamic Modeling of a Two-Axis, 
Parallel, H-Frame-Type XY Positioning System. IEEE/ASME Transactions on Mechatronics, 
15(2), 280–290. doi:10.1109/TMECH.2009.2020823 

Sutherland, I. E. (1964). Sketch pad a man-machine graphical communication system. In 
Proceedings of the SHARE design automation workshop (pp. 6.329–6.346). New York, NY, 
USA: ACM. doi:10.1145/800265.810742 

Synthetos. (2013). Synthetos.com | Complex Ideas... Retrieved August 26, 2013, from 
https://www.synthetos.com/ 

Techshop. (2013). TechShop is America’s 1st Nationwide Open-Access Public Workshop -- What 
Do You Want To Make at TechShop. Retrieved August 26, 2013, from 
http://www.techshop.ws/ 

Turing, A. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. 
Proceedings of the London Mathematical Society, 42(2). 

Ultimachine. (2013). RAMBo | UltiMachine. Retrieved August 26, 2013, from 
https://ultimachine.com/rambo 

Ultimaker. (2011, November 28). Ultimaker specs and features - Ultimaker Wiki. Retrieved August 
26, 2013, from http://wiki.ultimaker.com/Ultimaker_specs_and_features 

Ultimaker. (2013). Ultimaker | the fast, easy to build, affordable 3D printer - 3D printing for 
everyone! Retrieved August 26, 2013, from http://www.ultimaker.com/ 

Willow Garage. (2013). ROS | Willow Garage. Retrieved August 26, 2013, from 
http://www.willowgarage.com/pages/software/ros-platform 





 143 

Appendix A: An Algorithm for Synchronized 
Motion Across Networked Nodes. 

Introduction 

One of the key features of the virtual machine control framework developed 
in this thesis is that it is capable of controlling multiple motors in synchrony 
across a network bus. While the thesis itself discusses various means of 
synchronizing the nodes’ time bases over the network, this appendix 
addresses the algorithm by which single (or multiple) axis motor controller 
nodes can synthesize step signals in a coordinated manner from incremental 
position commands. The same algorithm could be used for synchronously 
generating reference signals for servo motors, or for establishing a common 
time base for any other synchronized activity. 

The Bresenham Line Drawing Algorithm 

The motion of CNC machines is restricted to a grid, the coarseness of which 
is determined by the positioning resolution of the machine. In the case of 
stepper motor driven machines, this resolution is set by the step angle and 
mechanical reduction of the actuators. Servo-driven machines are limited by 
the resolution of the encoders that provide positional feedback to the 
controller. One of the fundamental challenges in moving a CNC machine 
along an arbitrary straight line is that the grid points to which the machine 
can locate do not always fall exactly on the desired path. Thus it is up to the 
controller to coordinate the motion of the various axes so that the machine 
best approximates the line. This challenge is made more difficult when the 
control software is running on relatively slow microcontrollers such as the 
Atmel ATMega series that currently dominates the hobbyist-level CNC 
controller market. 
 
In 1965 J.E. Bresenham published a seminal paper ‘Algorithm for Computer 
Control of a Digital Plotter,’ in which he outlined a technique for efficiently 
determining the discrete motions of the individual axes of a machine which 
would approximate a desired line (Bresenham, 1965). Bresenham’s algorithm 
manages to accomplish this task using only integer math, making it a very 
attractive candidate for running on a microcontroller. 
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Figure 99: 2D Bresenham Line Drawing Algorithm 

Consider the case shown in Figure 99. The target line (depicted as dashed) 
has a run of six steps and a rise of 5 steps. The Bresenham algorithm starts by 
identifying which axis is the major axis, that is, the axis in which the largest 
number of steps will be taken. The key to the algorithm is the assumption 
that a step will always be taken in the major axis. The role of the algorithm is 
to determine whether a step should also be taken in the minor axis. A step 
solely along the major axis results in a minor axis error equal to the 
normalized slope, because by definition the normalized slope is the rise of the 
target line over a run of one step. This error is accumulated for each step 
taken along the major axis, until the total error is greater than a half step. 
Then a step is taken in the minor axis, and a full step is subtracted from the 
running error tally. In order to avoid non-integer math, Bresenham keeps the 
slope in the form (minor steps / major steps). Every step along the major axis 
accumulates the total desired minor axis steps to the error tally. When this 
tally exceeds major steps/2, the error tally is reduced by the total desired 
major steps. To prevent the value (major steps/2) from being fractional, 
everything can be pre-multiplied by 2. The example of Figure 99 is worked 
out below: 
 
Starting 
Position 

Major 
Step? 

Net Error 
Before 
Minor Step 

Error > 
Major 
Steps/2? 

Minor 
Step? 

Net Error 
After 
Minor 
Step 

Ending 
Position 

(0,0) yes  5 5>3, yes yes 5 - 6 = -1 a: (1,1) 
(1,1) yes -1 + 5 = 4 4>3, yes yes 4 - 6 = -2 b: (2,2) 
(2,2) yes -2 + 5 = 3 4=3, no no 3 - 0 =  3 c: (3,2) 
(3,2) yes  3 + 5 = 8 8>3, yes yes 8 - 6 = 2 d: (4,3) 
(4,3) yes  2 + 5 = 7 7>3, yes yes 7 - 6 = 1 e: (5,4) 
(5,4) yes  1 + 5 = 6 6>3, yes yes 6 - 6 = 0 f: (6,5) 
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An important result, demonstrated in the above example, is that the 
Bresenham algorithm always concludes at the endpoint of the target line (i.e. 
zero accumulated error.) The solid line in Figure 99 shows the algorithm’s 
approximation of the dashed target line. 

Extending the Bresenham Algorithm to Many Axes 

 
Figure 100: Multi-Axis Bresenham Algorithm 

It is a trivial matter to extend the Bresenham algorithm to an arbitrary 
number of axes. Figure 100 shows three simultaneous axes stepping to a final 
position of (6, 5, 1). Because a step is always taken in the major axis, it is the 
major axis that synchronizes the motion of the other axes. In other words, the 
motion of the non-major axes are parameterized by the major axis. 

Coordinated Motion Across a Network, and the Virtual Major Axis 

 
Figure 101: The Virtual Major Axis 
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The realization that the major axis of the Bresenham Algorithm provides a 
means of synchronization is the key to the algorithm developed by the author 
to coordinate motion across networked motion control nodes. Every node is 
provided with a common major axis, called the virtual major axis, and a 
unique minor axis that represents the axis along which the node will actually 
generate steps.  
 
For example, consider a 5-axis machine in which each motor is controlled by 
a distinct node on a network. A position command is received requesting that 
the machine should move incrementally to (5, 6, 7, 8, 9). This means that 
the X axis should move five steps, the Y axis six steps, the Z axis seven steps, 
etc… in a coordinated manner. The largest number of steps to be taken 
during the move is nine steps. Therefore the virtual major axis has a length of 
nine steps. Each node is sent a move command containing both the virtual 
major axis and the real minor axis assigned to that node (shown in bold and 
underlined): X Axis Node: (5, 9), Y Axis Node: (6, 9), Z Axis Node: (7, 9), 
A Axis Node: (8, 9), B Axis Node(9, 9). Each node then pretends that it is 
performing a two-axis move exactly as in the Bresenham Line Drawing 
Algorithm, always internally stepping along the provided virtual major axis. 
Whenever a step is taken in the minor axis, the controller will generate a step 
pulse to the motor driver. 
 
So long as the algorithm begins simultaneously on all nodes, they will remain 
synchronized within the tolerance of their crystal clocks. The topic of 
synchronizing the time bases of the networked nodes is treated within the 
body of the thesis in the Framework section. It should be noted that 
acceleration and deceleration algorithms can still be implemented on the 
virtual major axis without affecting inter-node synchrony, so long as they are 
applied uniformly across all of the concerned nodes. 
 
Additionally, the virtual major axis can be used as a common time base for 
synchronizing other activities like the pulsing of a laser in coordination with 
the motion of a gantry to laser-raster an object.
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Appendix B: An Inertial  Comparison of Drive 
Mechanisms 

Introduction 

Drive motors have a limited amount of torque that they can provide. This 
output torque is typically inversely proportional to the motor speed, in 
accordance to its torque-speed curve. Not exceeding the maximum output 
torque is particularly important when using stepper motors: the lack of 
feedback in stepper drive systems means that errors due to skipped steps 
become cumulative. One of the primary sources of loading that motors 
experience is inertial, which they feel when starting or stopping. Thus, 
acceleration limiting is often used to permit higher maximum velocities by 
gradually easing up to or down from a top speed rather than trying to 
accelerate fully over the course of a single step. 
 

 
Figure 102: H-Bot Mechanism (same as Figure 63) 

 
Understanding the source of the inertial load on the motor is important for 
several reasons. The first is that it helps the machine designer decide when 
and where it is important to start considering the mass of the stage. It also 
plays a role in determining the acceleration values to use in the controller. 
Finally, understanding the source of the inertial load becomes important in 
systems such as an H-Bot (Figure 102) where the drive system is differential 
and thus the inertias of both axes are coupled. In a situation like this, 
simplistic acceleration/deceleration algorithms (such as that implemented by 
the author in this thesis) must decide whether to limit the acceleration of the 
motors or to limit the acceleration of the stage. 
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A potentially dominant source of inertia, although easy to overlook, comes 
from the motor itself. This appendix compares the inertia of typical stepper 
motors used by many hobbyist-grade stages with their effective inertias 
reflected through various drive mechanisms. The method, and tabulated 
results, are useful for understanding whether motor inertia or stage inertia is 
dominant for a variety of common scenarios. 

Method 

 
Figure 103: Energy Flow in a Motion Stage 

The goal of this exercise is to compare the inertia of a typical drive motor 
with that of the stage that it is driving. This is not completely straightforward 
because the motor is spinning and the stage is translating. Therefore we must 
convert the inertia of the motor into units of mass, or vice versa. The energy 
stored in a linearly translating stage is expressed as !

!
𝑚𝑣!, where m is the 

mass of the stage and v is the stage’s velocity. The energy stored in a spinning 
motor is expressed as !

!
𝑗𝜔!, where j is the inertia of the motor and 𝜔 is the 

motor’s rotational velocity. The stage and the motor are coupled to each 
other thru the drive mechanism, as shown in Figure 103. Our approach is to 
set the motor in motion, and to determine what mass the stage needs to store 
an equivalent amount of kinetic energy to that stored in the motor. Setting 

both energies equal and solving for m yields 𝑚 = 𝑗 !
!

!
. Both linear and 

inertial velocities are parameterized by time, thus the equation reduces to 

𝑚 = 𝑗 !
!

!
where Θ is the angle of rotation of the motor and d is the 

distance traveled by the stage. In fact, the ratio Θ /d is the reduction ratio of a 
mechanism that converts rotation into translation. 

Results 

Table 3 below applies the formula 𝑚 = 𝑗 !
!

!
 to a few popular stepper 

motors (LIN Engineering, 2013) and drive mechanisms to determine what 
stage mass is needed for the effective inertias of the motor and the stage to be 
equal. 
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Table 3: Comparison of Mechanism Equivalent Inertias 

 Mechanism 
Specifics 

Motor Effective 
Stage Mass 

 

BELT DRIVE 
 
18 Tooth MXL 
timing belt 
pulley. 
  
With a 1.8° 
stepper motor, 
the basic linear 
step size is 
0.007”. 
Θ/d = 172.6 
rad/m 

NEMA17, 1.34”L. (45oz-in) 
Inertia: 0.18 oz-in2. 

0.10 kg 
0.22 lbs 

NEMA17, 1.58”L. (63oz-in) 
Inertia: 0.28 oz-in2. 

0.15 kg 
0.33 lbs 

NEMA17, 1.89”L. (83oz-in) 
Inertia: 0.37 oz-in2. 

0.20 kg 
0.44 lbs 

NEMA23, 2.2”L. (173oz-in) 
Inertia: 1.5 oz-in2. 

0.82 kg 
1.80 lbs 

 

LEADSCREW 
 
10TPI Acme.  
 
With a 1.8° 
stepper motor, 
the basic linear 
step size is 
0.0005”. 
 
Θ/d = 2473 rad/m 

NEMA17, 1.34”L. (45oz-in) 
Inertia: 0.18 oz-in2. 

20.2 kg 
44.5 lbs 

NEMA17, 1.58”L. (63oz-in) 
Inertia: 0.28 oz-in2. 

31.5 kg 
69.1 lbs 

NEMA17, 1.89”L. (83oz-in) 
Inertia: 0.37 oz-in2. 

41.5 kg 
91.4 lbs 

NEMA23, 2.2”L. (173oz-in) 
Inertia: 1.5 oz-in2. 

168 kg 
370 lbs 

 

Conclusions 

For lightweight stages driven by a belt, such as what is used in the Ultimaker 
(Ultimaker, 2013), a popular hobbyist 3D printer, it can be concluded that 
the inertia of the motor is roughly equivalent to the that of the stage. 
However, for leadscrew-driven desktop-sized CNC machines, the inertia of 
the motor far exceeds that of the stage. For example, even a modest stepper 
motor such as a mid-length NEMA 17, has an effective mass of around 70 
lbs when driving a load thru a 10TPI leadscrew. This is roughly what many 
desktop-sized milling machines weigh. 
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Appendix C: Managed/Gestalt 

Introduction 

One of the important features of Gestalt is its ability to treat disparate 
networked nodes as a cohesive whole. For operations like the coordinated 
motion of multiple stepper motors, a means is necessary for synchronizing 
the time bases of all involved nodes so that they act in phase with each other. 
The method currently employed is what might be called ‘soft 
synchronization’: a setup packet is sent to each node, configuring it with 
specific parameters related to its role in the distributed action. Once each 
involved node has been prepared, a synchronization packet is sent as 
‘multicast’ to all nodes on the network. Upon receipt, all of the nodes begin 
to execute the command for which they were set up. The synchronization 
packet is presumably heard by all nodes at the same time, thus causing them 
to be in sync with each other. In order to permit buffering (and to enable the 
associated throughput benefits), a relaxation is made on the synchronization 
process in which configuration and synchronization packets can be sent to 
the nodes while they are in the middle of a prior operation. The 
configuration packets get buffered, and the synchronization packets 
increment a counter that is decremented whenever a new move is pulled from 
the buffer and executed. So long as the counter is non-zero, new moves 
continue to be pulled from the buffer. This strategy helps to mitigate 
communications throughput problems, but synchronization will eventually 
be lost as time elapses from when the first synchronization packet was 
received, because sync packets that are received while a move is in progress 
have no ability to synchronize the nodes – they only serve to give permission 
to the nodes to continue pulling from their move buffers. Even with a 
buffering strategy, the distributed control case study showed that the soft 
synchronization method is inadequate for paths with even moderate speed 
and complexity. This appendix presents a hypothetical solution to these 
problems. 
 

A Managed Network Approach 

The proposed approach involves having a hardware module act as a gateway 
that adapts the virtual interface to the physical network. This is shown in 
Figure 104 below. Since it is operating at a hardware level, the network 
manager is able to communicate latency-free with all of the nodes on the 
network. Additionally, the virtual machine is able to talk much faster to the 
network manager because the communications link is bi-directional and thus 
packets can be streaming to the network manager and it will still be able to 
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indicate to the virtual interface if a transmission error has occurred. Many of 
the packets used to control the machines of the case studies only require a 
response to guarantee receipt, particularly the packets involved in high-speed 
motion. 

 
Figure 104: Managed Gestalt (same as Figure 12) 

An extended bus interface has been defined (Figure 105), and is in fact 
already integrated into the latest version of the FABNET interface and is 
built into several Gestalt-compatible hardware nodes.  
 

 
Figure 105: The FABNET Bus 

The FABNET bus consists of two power lines, the two differential signaling 
lines used by the RS-485 standard, and three open-collector flag lines which 
are weakly pulled high by external resistors. The basic idea is as follows: the 
virtual nodes stream as many packets as they desire to the network manager, 
which queues the packets in a large memory buffer. Concurrently, the 
network manager begins loading setup packets into the buffers of the physical 
nodes, just as in the soft synchronization method discussed earlier. However, 
instead of sending a synchronization packet to trigger simultaneous action, 
the network manager pulses the sync line low. Each node then begins its 
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move and latches the sync line low until its move is finished. As soon as all 
nodes are finished, the sync line returns high, indicating to the network 
manager that they are ready for another synchronization pulse. So long as 
there are an outstanding number of unexecuted moves in the physical node 
buffers, the network manager continues to pulse sync low and then listens for 
it to go high before repeating. 
 
This strategy allows a constant stream of packets to be sent to the nodes with 
no latency, and with resynchronization after each packet. The ‘stop’ signal 
line is used to indicate that a buffer is full in a physical node and that the 
network manager should hold off on sending subsequent packets until the 
line is released. The ‘error’ line indicates a transmission error, which the 
network manager would then sort out to determine what went wrong and 
how to respond. 
 
It is possible that little modification will be required to the Gestalt framework 
to implement this managed network approach, as the current generation of a 
sync packet would be replaced with a hardware strobe. However, there is a 
question of how virtual nodes, which current require a response to any 
request, will elegantly be able to handle both modalities of synchronization. 


