
Embedded programming: Comparing the performance and development
workflows for architectures
Embedded programming week

FABLAB BRIGHTON 2018

What do we mean by architecture?
The architecture of microprocessors and microcontrollers are classified based on the way
memory is allocated (memory architecture). There are two main ways of doing this:

Von Neumann architecture (also known as Princeton)
Von Neumann uses a single unified cache (i.e. the same memory) for both the code
(instructions) and the data itself,

Under pure von Neumann architecture the CPU can be either reading an instruction or
reading/writing data from/to the memory. Both cannot occur at the same time since the
instructions and data use the same bus system.

Harvard architecture
Harvard architecture uses different memory allocations for the code (instructions) and the
data, allowing it to be able to read instructions and perform data memory access
simultaneously.

 The best performance is achieved when both instructions and data are supplied by their
own caches, with no need to access external memory at all.

How does this relate to microcontrollers/microprocessors?
We found this page to be a good introduction to the topic of microcontrollers and
microprocessors, the architectures they use and the difference between some of the
common types. First though, it’s worth looking at the difference between a microprocessor
and a microcontroller. Microprocessors (e.g. ARM) generally consist of just the Central
Processing Unit (CPU), which performs all the instructions in a computer program, including
arithmetic, logic, control and input/output operations. Microcontrollers (e.g. AVR, PIC or
8051) contain one or more CPUs with RAM, ROM and programmable input/output
peripherals. Microprocessors tend to operate at much greater clock speeds on general
application tasks, like gaming, photo editing and software development, whereas
microcontrollers are designed for more specific tasks or development in smaller embedded
systems like keyboards, mice, electronic toys and vending machines.

It’s worth noting that Raspberry Pi computers use ARM processors, while Arduino
development boards use AVR microcontrollers (ATtiny, ATmega etc).

We found the following table from this site to be a useful summary comparing the various
microcontrollers (8081, PIC and AVR) with the ARM microprocessor.

https://www.elprocus.com/difference-between-avr-arm-8051-and-pic-microcontroller/
https://www.elprocus.com/difference-between-avr-arm-8051-and-pic-microcontroller/

Using a Raspberry Pi to run an LED flashing programme in Python
We’ve all now had some experience using an AVR microcontroller (ATtiny85) on our own
boards and using Arduinos, and how to interface with this using the Arduino IDE, so as part
of our class activity we spent some time together using a Raspberry Pi (which uses and
ARM microprocessor) to replicate the blinking LED programme that we’d achieved with our
own boards using the Arduino IDE. Many thanks to Mike for running the session!

Firstly we went through the concept of General Purpose Input and Output pins (GPIO), and
found that this site gives a good introduction with some good resources.

Here's the Raspberry pi setup we used with keyboard and mouse plugged into the USB
ports and the monitor plugged in to the HDMI. The LED was plugged into the GPIO pin on
the Raspberry pi (pin 7).

We then created a python programme using the code below, and saved this as
blink-LED.py in the root directory.

https://learn.sparkfun.com/tutorials/raspberry-gpio

import RPi.GPIO as GPIO
import time
GPIO.setmode (GPIO.BOARD)
led = 7
GPIO.setup(led, GPIO.OUT)
for blink in range (1,111):

GPIO. output(led,1)
time.sleep(0.1)
GPIO.output(led,0)
time.sleep(0.1)

GPIO.cleanup()

In the LX Terminal programme (on the desktop), we typed:

Sudo python3 blink-LED.py

Which ran the programme in Python3 and the LED blinked!

References:
1. https://www.elprocus.com/difference-between-avr-arm-8051-and-pic-microcontroller/
2. https://www.quora.com/What-is-the-difference-between-the-Von-Neumann-architecture-and-t

he-Harvard-architecture
3. http://www.edgefxkits.com/blog/difference-between-von-neumann-and-harvard-architecture
4. https://learn.sparkfun.com/tutorials/raspberry-gpio

https://www.elprocus.com/difference-between-avr-arm-8051-and-pic-microcontroller/
https://www.quora.com/What-is-the-difference-between-the-Von-Neumann-architecture-and-the-Harvard-architecture
https://www.quora.com/What-is-the-difference-between-the-Von-Neumann-architecture-and-the-Harvard-architecture
http://www.edgefxkits.com/blog/difference-between-von-neumann-and-harvard-architecture/
https://learn.sparkfun.com/tutorials/raspberry-gpio

