Week 4: Electronics Production
19.2. 2015

This week we will learn about electronics production - a new subject for me, at
least.

The agenda:

PCB fabrication etching lithography, transfer ferric/cupric chloride,
ammonium/sodium persulfate MSDS waste disposal machining tools 0.010
1/64 1/32 fixturing orientation zeroing lifetime deburring cleaning

cutting printing plating sewing PCB materials rigid FR4 (epoxy glass) FR1
(phenolic paper) flex Kapton #1 epoxy film, #1126 copper tape high-frequency
teflon glass copper 0.50z: 17.5um 1.0 0z: 35 um 2.0 0z: 70 um board
houses AP Circuits, Advanced, Sierra, Screaming Circuits, Gold Phoenix design rules
width/spacing (15, 5 mils) layers 1,1.5,2,4, N solder mask, silk screen vias

blind, buried components through-hole surface-mount chip-scale breadboards
assembly solder eutectic wetting flux wire, paste, bar manual, reflow,
wave ROHS stuffing component orientation tacking down parts bottom to
top, inside to outside fumes washing desoldering braid hot air gravity
cutting traces, adding jumpers pick-and-place encapsulation CAM fab modules
linewidth assignment make the FabISP in-circuit programmer David Andy Valentin
hello.ISP.44.cad board components traces interior hello.ISP.44.res.cad board traces
interior inventory microcontroller crystal USB connector ribbon connector Zener diode
jumper firmware.zip USB power make clean make hex (sudo)
make fuse (check programmer in Makefile, may need to repeat) (sudo) make program
desolder SJ1 and SJ2 make IDC ISP cable, connecting header pin 1 to pin 1, check
wires

The assignment for this week is to make the FabISP in-circuit programmer.
A new version of Antimony will come next week - follow the commit.
Fabmodules.org

Reviews:

Brazilian student who created a press-fit for a form.
Michael Schutz
Daniel Parilla
Patricio Ortiz
Gabriel Ewing
Gudbjorg
Pérarinn

Igor (Russia)
Yoshi Yamahara
Ben Mathes
Jasmin Cheng

This week:
Making of circuitboard

Programming of microcontroller.

A device to make a device.

60 dollara

We will make one and use it to program other things

To make a circuit board by etching
Ferric cubric chloride, sulphates

MSDS - hazardous materials
Waste disposal - to dispose of them in a safe way

Machining:

Miling machine to mill the board

Endmills used to cut

As the tools get smaller the easier they break, use the biggest ones possible

Double stick tape - holding the board in place and flat

Zero-ing the tools, setting it exactly on the top of the board, tapping it a bit, hold
it to tighten.
A uniform cut is desired

Common irritating beginners mistake - set screw should be just snug, not too
tight

Sacrificial layer - replacing needed every few months
If the bed is not clean and flat, the board moves a little, endmills get broken

The endmills have a lifetime... when the tool is new very fine shavings can be
seen around the cut. But when the tool gets old rough cuts are visible. Burrs
with a very new tool...

Washing the boards to prevent fingerprints

Research on printable materials
Research: e-broidery

PCB

FR4 Epoxy glass - Kkills the tools

FR1 phenolic papter: is not quite as strong and does not so well at high
temperature, but cuts beautifully

Flexible circuites
Epoxy film tape -

High frequency - typically Teflon or glass
Copper - in ounces per area

Make a PCB

Board Houses - send to them - check list
Euro boards?
OSH Park - an electric ecosystem

1/64
One layer PCB, possible to make more layer PCBs
1.5 layer - 0 crossover

Cheapest electronics

Use as few layers as you can get away with

Set screen that does the writing on the board

Via is a connection between the top and the bottom

Components

Octopart - version of a microcontroller in the surface, through hole that goes
through a hole in the board

Anchorage if you need a better connection

Solder paste -

Bread boards, then PBC - the electrical performance is terrible, causing
instability.

Quickturn design in fab

Solder - lead tin, dip in the middle, typically a combination or two or more alloys,
the flux helps to clean the join and attach the bits

Solder paste has a lifetime and has to be refrigerated

Stuffing - the boards. Attach the components. Board - chip. See picture.
Clean the tip. Get a bit of solder on the tip. When you bring in the iron, it helps
the heat transfer. Heat on the junction of the solder iron and the bit and then
bring in the solder.

Solder the components. Orientation of the component is important. From the
bottom to top. When you are stuffing the board an important trick is to ... use the
solder to tack it down.

When you solder there are fumes released from it. Exhaust fans to help.

All the components are designed to wash and that gets rid with the flux.

Mistakes:
Braid - add some solder to the braid, it wets the join and takes the rest away.

Scalpel knife can cut out mistakes, like traces

DDM Novastar - making of boards - DIY - machine building
If your board is going to be in the environment, it needs to be incapsulated
Board to make - board perimeter

Fabmodules.org

Png

PBC.traces

Roland MDX-20.rml

PBC.outline

Calculating of the outline?

Ribbon connector going into ...

IDC - goes into housing

Pulling the ribbon and push twice

Firmware.zip

Mill the board and stuff them this week

Mac-version — Check Tutorials

Next week review - go through the steps needed, in the review to see successes
and failure, talk project plans. All websites and project pages up.

Make: hello.ISP.44.res.cad

Recommended:
http://academy.cba.mit.edu/classes/embedded_programming/hello.ISP.44.com
ponents.png - a microcontroller, that can do various tasks, like read sensors.

Before next meeting - check tutorials:

ISP = in circuit programming

Notes on using the Roland Modela milling machine - for milling PCBs:
Adam Harris’s video: FabLab Using the Modela to Mill PCBs

1. Start with png images.

2. Run from fabmodules: run from command line, Ctrl - Alt, T, type fab,
opens up fabmodule selector.

3. Insertimage, select traces png file - select Roland Modela rml - click
make PNG.

~

A window pops up. Load the image you wish to cut (isp.png). Select
width of the drill bit (1/64). At the bottom change the C depth (intensity)
to 0.5 mm. Set the speed to 4 mm/sec. Set xmin to 2 and ymin to 2.

In view mode tape the copper board evenly and glue it on to a sacrificial
layer, that can be cut into when the final cutting of the board will be done.
Move the tool to home and set the height, just on top of the material, by
loosening the tool, move it down, turn it slightly and fasten the screw.
Now calculate the trences and move to xmin ymin.

Press send, to send the message from the computer to the milling
machine.

Soldering

Programming

Sk wh

~

8.
9.

Get Crosspack AVR - download

Get Make, via download of Xcode from Apple

Download firmware: FabISP Firmware for MacOS 10.8.2

Open terminal navigate to the desktop:

cd ~/Desktop/

Unzip the firmware.zip directory (the directory will be "firmware.zip" if
you downloaded the earlier version):

unzip fabISP_mac.0.8.2_firmware.zip

Move into the newly created firmware directory on your desktop

cd ~/Desktop/firmware

Edit the Make File

The Makefile is in the firmware directory that we downloaded. The Makefile is
set up to work with the AVRISP2 by default. If you are using another
programmer, you will need to edit the Makefile.

Open the Makefile with TextEdit.

Make Changes - All OS:

A window will open containing the Makefile. Go to the line that says:
#AVRDUDE = avrdude -c usbtiny -p $(DEVICE) # edit this line for your programmer
AVRDUDE = avrdude -c avrisp2 -P usb -p $(DEVICE) # edit this line for your programmer

- If using the USBtiny programmer or another FabISP

- Remove the "#" in front of the line with "usbtiny" in it

- Add a "#" to beginning the line with the "avrisp2" in it to comment it out.
- save the Makefile

Program the fabISP board

Open Terminal — see log:

Last login: Fri Feb 13 17:33:48 on console
Skulinas-MBP:~ skulina$ cd ~/Desktop/
Skulinas-MBP:Desktop skulina$ unzip fabISP_mac.0.8.2_firmware.zip
Archive: fablSP_mac.0.8.2_firmware.zip
creating: fabISP_mac.0.8.2_firmware/
inflating: fabISP_mac.0.8.2_firmware/.DS_Store
creating: __MACOSX/
creating: __MACOSX/fabISP_mac.0.8.2_firmware/
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/._.DS_Store
inflating: fabISP_mac.0.8.2_firmware/main.c
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/._main.c
inflating: fabISP_mac.0.8.2_firmware/main.elf
inflating: fabISP_mac.0.8.2_firmware/main.hex
inflating: fabISP_mac.0.8.2_firmware/main.o
inflating: fabISP_mac.0.8.2_firmware/Makefile
inflating: __MACQOSX/fabISP_mac.0.8.2_firmware/._Makefile
inflating: fabISP_mac.0.8.2_firmware/usbconfig.h
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/._usbconfig.h
creating: fabISP_mac.0.8.2_firmware/usbdrv/
inflating: fabISP_mac.0.8.2_firmware/usbdrv/.DS_Store
creating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/
inflating: __MACQOSX/fabISP_mac.0.8.2_firmware/usbdrv/._.DS_Store
inflating: fabISP_mac.0.8.2_firmware/usbdrv/asmcommon.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._asmcommon.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/Changelog.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._Changelog.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/CommercialLicense.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._CommercialLicense.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/License.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._License.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/oddebug.c
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._oddebug.c
inflating: fabISP_mac.0.8.2_firmware/usbdrv/oddebug.h
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._oddebug.h
inflating: fabISP_mac.0.8.2_firmware/usbdrv/oddebug.o
inflating: fabISP_mac.0.8.2_firmware/usbdrv/Readme.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._Readme.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/USB-ID-FAQ.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._USB-ID-FAQ.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/USB-IDs-for-free.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._USB-IDs-for-free.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbconfig-prototype.h
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbconfig-prototype.h
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrv.c
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrv.c
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrv.h
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrv.h
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrv.o
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm.asm
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm.asm
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm.o
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm.S
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm.S
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm12.inc

inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm12.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm128.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm128.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm15.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm15.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm16.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm16.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm165.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm165.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm18-crc.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm18-crc.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbdrvasm20.inc
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbdrvasm20.inc
inflating: fabISP_mac.0.8.2_firmware/usbdrv/USBID-License.txt
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._USBID-License.txt
inflating: fabISP_mac.0.8.2_firmware/usbdrv/usbportability.h
inflating: __MACOSX/fabISP_mac.0.8.2_firmware/usbdrv/._usbportability.h
Skulinas-MBP:Desktop skulina$ cd ~/Desktop/firmware
-bash: cd: /Users/skulina/Desktop/firmware: No such file or directory
Skulinas-MBP:Desktop skulina$ cd ~/Desktop/firmware
-bash: cd: /Users/skulina/Desktop/firmware: No such file or directory
Skulinas-MBP:Desktop skulina$ cd ~/Desktop/fabISP_mac.0.8.2_firmware
Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ avrdude
Usage: avrdude [options]

Options:
-p <partno> Required. Specify AVR device.
-b <baudrate> Override RS-232 baud rate.
-B <bitclock> Specify JTAG/STK500v2 bit clock period (us).
-C <config-file> Specify location of configuration file.
-c <programmer> Specify programmer type.
-D Disable auto erase for flash memory
-i <delay> ISP Clock Delay [in microseconds]
-P <port> Specify connection port.
-F Override invalid signature check.
-e Perform a chip erase.
-0 Perform RC oscillator calibration (see AVR053).

-U <memtype>:r|w|v:<filename>[:format]
Memory operation specification.
Multiple -U options are allowed, each request
is performed in the order specified.

-n Do not write anything to the device.
-V Do not verify.
-u Disable safemode, default when running from a script.
-s Silent safemode operation, will not ask you if
fuses should be changed back.
-t Enter terminal mode.

-E <exitspec>[,<exitspec>] List programmer exit specifications.
-x <extended_param> Pass <extended_param> to programmer.

-y Count # erase cycles in EEPROM.

-Y <number> Initialize erase cycle # in EEPROM.

-v Verbose output. -v -v for more.

-q Quell progress output. -q -q for less.

-l logfile Use logfile rather than stderr for diagnostics.
-? Display this usage.

avrdude version 6.0.1, URL: <http://savannah.nongnu.org/projects/avrdude/>
Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make clean

Agreeing to the Xcode/iOS license requires admin privileges, please re-run as root via sudo.

Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ sudo make clean

WARNING: Improper use of the sudo command could lead to data loss
or the deletion of important system files. Please double-check your
typing when using sudo. Type "man sudo" for more information.

To proceed, enter your password, or type Ctrl-C to abort.

Password:

You have not agreed to the Xcode license agreements. You must agree to both license agreements
below in order to use Xcode.

Hit the Enter key to view the license agreements at
'/Applications/Xcode.app/Contents/Resources/English.lproj/License.rtf'

IMPORTANT: BY USING THIS SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE FOLLOWING
APPLE TERMS:

A. MAC SDK AND XCODE AGREEMENT
B. iOS SDK AGREEMENT

APPLE INC.
MAC SDK AND XCODE AGREEMENT

PLEASE READ THIS MAC SDK AND XCODE AGREEMENT ("LICENSE") CAREFULLY BEFORE USING THE
DEVELOPER SOFTWARE (DEFINED BELOW). BY USING THE DEVELOPER SOFTWARE, YOU ARE
AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU ARE ACCESSING THE DEVELOPER
SOFTWARE ELECTRONICALLY, SIGNIFY YOUR AGREEMENT TO BE BOUND BY THE TERMS OF THIS
LICENSE BY CLICKING THE "AGREE " BUTTON. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE,
DO NOT USE THE DEVELOPER SOFTWARE AND CLICK “DISAGREE”.

IMPORTANT NOTE: To the extent that this software may be used to reproduce materials, it is licensed
to you only for reproduction of non-copyrighted materials, materials in which you own the copyright,
or materials you are authorized or legally permitted to reproduce. If you are uncertain about your
right to copy any material, you should contact your legal advisor.

1. General.

By typing 'agree' you are agreeing to the terms of the software license agreements. Type 'print' to
print them or anything else to cancel, [agree, print, cancel] agree

You can view the license agreements in Xcode's About Box, or at
/Applications/Xcode.app/Contents/Resources/English.lproj/License.rtf

rm -f main.hex main.Ist main.obj main.cof main.list main.map main.eep.hex main.elf *.0 usbdrv/*.o
main.s usbdrv/oddebug.s usbdrv/usbdrv.s

Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make clean

rm -f main.hex main.Ist main.obj main.cof main.list main.map main.eep.hex main.elf *.0 usbdrv/*.o
main.s usbdrv/oddebug.s usbdrv/usbdrv.s

Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make hex
avr-gcc -Wall -Os -DF_CPU=20000000 -lusbdrv -I. -DDEBUG_LEVEL=0 -mmcu=attiny44 -c
usbdrv/usbdrv.c -o usbdrv/usbdrv.o
avr-gcc -Wall -Os -DF_CPU=20000000 -lusbdrv -I. -DDEBUG_LEVEL=0 -mmcu=attiny44 -x
assembler-with-cpp -c usbdrv/usbdrvasm.S -o usbdrv/usbdrvasm.o
avr-gcc -Wall -Os -DF_CPU=20000000 -lusbdrv -I. -DDEBUG_LEVEL=0 -mmcu=attiny44 -c
usbdrv/oddebug.c -o usbdrv/oddebug.o
avr-gcc -Wall -Os -DF_CPU=20000000 -lusbdrv -I. -DDEBUG_LEVEL=0 -mmcu=attiny44 -c main.c -o
main.o
main.c:88:13: warning: always_inline function might not be inlinable [-Wattributes]
static void delay (void)
A
avr-gcc -Wall -Os -DF_CPU=20000000 -lusbdrv -I. -DDEBUG_LEVEL=0 -mmcu=attiny44 -o main.elf
usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o main.o
rm -f main.hex main.eep.hex
avr-objcopy -j .text -j .data -O ihex main.elf main.hex
avr-size main.hex
text data bss dec hex filename
0 2002 O 2002 7d2 main.hex
Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make fuse
avrdude -c usbtiny -p attiny44 -U hfuse:w:0xDF:m -U Ifuse:w:0xFF:m

avrdude: AVR device initialized and ready to accept instructions
Reading | #HHHHHHHHEHHHHHHHHHHHHEHEHEHEHH B | 100% 0.00s

avrdude: Device signature = 0x1e9207
avrdude: reading input file "OxDF"
avrdude: writing hfuse (1 bytes):

Writing | ##HHH#HH#HHH | 100% 0.00s

avrdude: 1 bytes of hfuse written

avrdude: verifying hfuse memory against OxDF:
avrdude: load data hfuse data from input file OxDF:
avrdude: input file OxDF contains 1 bytes

avrdude: reading on-chip hfuse data:

Reading | #####HHHHHHHHHHHHHHH | 100% 0.00s

avrdude: verifying ...

avrdude: 1 bytes of hfuse verified
avrdude: reading input file "OxFF"
avrdude: writing Ifuse (1 bytes):

Writing | ##AHH#HH# | 100% 0.00s

avrdude: 1 bytes of Ifuse written

avrdude: verifying Ifuse memory against OxFF:
avrdude: load data Ifuse data from input file OxFF:
avrdude: input file OxFF contains 1 bytes
avrdude: reading on-chip Ifuse data:

Reading | #####HHHHHHHHHHHHHHEHHH | 100% 0.00s

avrdude: verifying ...
avrdude: 1 bytes of Ifuse verified

avrdude: safemode: Fuses OK (H:FF, E:DF, L:FF)
avrdude done. Thank you.

Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make program
avrdude -c usbtiny -p attiny44 -U flash:w:main.hex:i

avrdude: AVR device initialized and ready to accept instructions
Reading | #HHHHHHHHEHHHHHHHEHHHEHEHBHEHH B | 100% 0.00s

avrdude: Device signature = 0x1e9207

avrdude: NOTE: "flash" memory has been specified, an erase cycle will be performed
To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "main.hex"

avrdude: writing flash (2002 bytes):

Writing | #H##HtHGH I | 100% 2.48s
avrdude: 2002 bytes of flash written

avrdude: verifying flash memory against main.hex:

avrdude: load data flash data from input file main.hex:

avrdude: input file main.hex contains 2002 bytes

avrdude: reading on-chip flash data:

Reading | #####HHHHHHHHH#HHHHHHEHH | 100% 3.565

avrdude: verifying ...
avrdude: 2002 bytes of flash verified

avrdude: safemode: Fuses OK (H:FF, E:DF, L:FF)

avrdude done. Thank you.

avrdude -c usbtiny -p attiny44 -U hfuse:w:0xDF:m -U Ifuse:w:0xFF:m

avrdude: AVR device initialized and ready to accept instructions

Reading | #HHHHHHHHHEHIHHHHHHHEHEHEHBHEHHE B | 100% 0.00s
avrdude: Device signature = 0x1e9207

avrdude: reading input file "OxDF"

avrdude: writing hfuse (1 bytes):

Writing | #HHHHEHHHHHHEHEHEHEHEHE B S | 100% 0.00s
avrdude: 1 bytes of hfuse written

avrdude: verifying hfuse memory against OxDF:

avrdude: load data hfuse data from input file OxDF:

avrdude: input file OxDF contains 1 bytes

avrdude: reading on-chip hfuse data:

Reading | #####HHHHH#HHHHHHHHHH | 100% 0.00s

avrdude: verifying ...

avrdude: 1 bytes of hfuse verified
avrdude: reading input file "OxFF"
avrdude: writing Ifuse (1 bytes):

Writing | ####HH#HH#HH | 100% 0.00s

avrdude: 1 bytes of Ifuse written

avrdude: verifying Ifuse memory against OxFF:
avrdude: load data Ifuse data from input file OxFF:
avrdude: input file OxFF contains 1 bytes
avrdude: reading on-chip Ifuse data:

Reading | #####HHHHHHHHHHHHHHHHEHHH | 100% 0.00s

avrdude: verifying ...
avrdude: 1 bytes of Ifuse verified

avrdude: safemode: Fuses OK (H:FF, E:DF, L:FF)
avrdude done. Thank you.

Skulinas-MBP:fabISP_mac.0.8.2_firmware skulina$ make program

Verify the results:
Go to the System Profiler > Hardware > USB > Hub:

Click the "apple" menu in your main toolbar

Select "about this mac"

Select "more info"

Under the "Contents" menu in the left hand navigation

- Click "Hardware" to expand the hardware menu (if not already expanded)

- Click "USB"

- Under the "USB Device Tree"

- Click "Hub" to expand the hub menu (if not already expanded)

- "FabISP" should be listed in the hub menu

5. Your FabISP device has been successfully programmed and is recognized by your computer.

LW =

When the programming is done:

Remove the 0 ohm resistor and solder bridge as shown in the picture below. Now you can use it as a
programmer to program other boards.

Remove 0lohm
resistor |
{ it

solder bridge

